Gene expression was measured from the dentate gyrus and entorhinal cortex harvested from human postmortem samples.
Molecular mechanism for age-related memory loss: the histone-binding protein RbAp48.
Age, Specimen part, Subject
View SamplesAbnormal function of genes is at the root of most cancers, but heritable cancer syndromes account for a very small minority of all tumors in humans and domestic animals. The majority of cancers are sporadic, that is, they are not heritable in the strictest sense. Instead, sporadic cancers occur due to interactions of unknown intrinsic (heritable) and environmental factors that lead to malignant transformation and uncontrolled growth. Identification of heritable risk factors in sporadic human cancers is difficult because individual genetic backgrounds are very heterogeneous. To this end, individual genetic backgrounds of purebred dogs are more homogeneous, and dog breeds show different predilection to develop specific cancers. Here, we used genomic screens based on gene expression profiling to identify sets of genes that may contribute to the development of canine hemangiosarcoma, a relatively common endothelial sarcoma. Specific genes in a single breed (Golden Retrievers) are modulated by (or with) heritable risk traits, showing functional features that appear to modulate tumor behavior. Our results suggest these methods are suitable to identify genes that will enhance our understanding of how these cancers happen, as well as possible treatment targets that will improve outcomes of both human and canine cancer patients.
Innate immune response to influenza A virus in differentiated human alveolar type II cells.
Specimen part, Subject, Time
View SamplesCD34 positive cells of bone marrow samples from normal and MDS samples were cultured ex vivo into erythroid conditions.
Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes.
Specimen part
View SamplesUsing RNA-seq we characterized gene expression changes occuring upon knockout of EZH2, EZH1, EZH1+EZH2 or SUZ12 in a neurofibroma cell line. We also investigated the transcriptional consequences of EZH1+EZH2 double knockout in a SUZ12-mutant MPNST cell line. Overall design: Examination of transcript abundance in wild-type and mutant ipNF05.5 or 88.14 cells. Two biological replicates were performed for wild-type and mutant ipNF05.5 cell lines. Three biological replicates were performed for wild-type and mutant 88.14 cell lines.
EZH1/2 function mostly within canonical PRC2 and exhibit proliferation-dependent redundancy that shapes mutational signatures in cancer.
Cell line, Subject
View SamplesNCoR and SMRT are two paralogous vertebrate proteins that function as corepressors with unliganded nuclear receptors. Although C. elegans has a large number of nuclear receptors, orthologues of the corepressors NCoR and SMRT have not unambiguously been identified in Drosophila or C. elegans. Here, we identify GEI-8 as the closest homologue of NCoR and SMRT in C. elegans and demonstrate that GEI-8 is expressed as at least two isoforms throughout development in multiple tissues, including neurons, muscle and intestinal cells. We demonstrate that a homozygous deletion within the gei-8 coding region, which is predicted to encode a truncated protein lacking the predicted NR domain, results in severe mutant phenotypes with developmental defects, slow movement and growth, arrested gonadogenesis and defects in cholinergic neurotransmission. Whole genome expression analysis by microarrays identified sets of de-regulated genes consistent with both the observed mutant phenotypes and a role of GEI-8 in regulating transcription. Interestingly, the upregulated transcripts included a predicted mitochondrial sulfide:quinine reductase encoded by Y9C9A.16. This locus also contains non-coding, 21-U RNAs of the piRNA. Inhibition of the expression of the region coding for 21-U RNAs leads to irregular gonadogenesis in the homozygous gei-8 mutants, but not in an otherwise wild-type background, suggesting that GEI-8 may function in concert with the 21-U RNAs to regulate gonadogenesis. Our results confirm that GEI-8 is the orthologue of the vertebrate NCoR/SMRT corepressors and demonstrate important roles for this putative transcriptional corepressor in development and neuronal function.
GEI-8, a homologue of vertebrate nuclear receptor corepressor NCoR/SMRT, regulates gonad development and neuronal functions in Caenorhabditis elegans.
No sample metadata fields
View SamplesMycobacteria-induced apoptosis of macrophages plays an important role in modulation of the host immune response involving TNF-alpha as major cytokine. The underlying mechanisms are still ill-defined. Here, we show for the first time that methylglyoxal (MG) and AGEs levels were elevated during mycobacterial infection of macrophages and that their increased levels mediated mycobacteria-induced apoptotic and immune response of macrophages. Moreover, we show that high levels of AGEs were formed at the sites of pulmonary tuberculosis. This observation represents the first evidence of the potential involvement of AGEs in tuberculosis and in infectious diseases in general. Global gene expression profiling of MG-treated macrophages reveals diversified potential roles of MG in cellular processes, including apoptosis, immune response, and growth regulation. The results of this study provide new insights into intervention strategies to develop therapeutic tools against infectious diseases in which MG and AGE production plays critical roles.
Critical role of methylglyoxal and AGE in mycobacteria-induced macrophage apoptosis and activation.
No sample metadata fields
View SamplesNHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in C. elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical coregulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.
NHR-23 dependent collagen and hedgehog-related genes required for molting.
Specimen part
View SamplesPolycomb group (PcG) proteins play a pivotal role in silencing developmental genes and help to maintain various stem and precursor cells and regulate their differentiation. PcG factors also regulate dynamic and complex regional specification, particularly in mammals, but this activity is mechanistically not well understood. In this study, we focused on proximal-distal (PD) patterning of the mouse forelimb bud to elucidate how PcG factors contribute to a regional specification process that depends on developmental signals. Depletion of the RING1 proteins RING1A (RING1) and RING1B (RNF2), which are essential components of Polycomb repressive complex 1 (PRC1), led to severe defects in forelimb formation along the PD axis. We show that preferential defects in early distal specification in Ring1A/B-deficient forelimb buds accompany failures in the repression of proximal signal circuitry bound by RING1B, including Meis1/2, and the activation of distal signal circuitry in the prospective distal region. Additional deletion of Meis2 induced partial restoration of the distal gene expression and limb formation seen in the Ring1A/B-deficient mice, suggesting a crucial role for RING1-dependent repression of Meis2 and likely also Meis1 for distal specification. We suggest that the RING1-MEIS1/2 axis is regulated by early PD signals and contributes to the initiation or maintenance of the distal signal circuitry.
RING1 proteins contribute to early proximal-distal specification of the forelimb bud by restricting Meis2 expression.
Specimen part
View SamplesPolycomb group (PcG) proteins play a pivotal role in silencing of development-related genes and contribute to maintain various stem and precursor cells and regulate their differentiation. However, it is not well understood how PcG factors regulate dynamic and complex morphogenetic processes particularly in mammals. In this study, we focused on proximal-distal (PD) patterning of forelimb bud to elucidate how PcG factors contribute to regulation of morphogenetic processes that depends on developmental signals. Depletion of RING1 proteins, which are common components of both canonical and variant Polycomb repressive complex-1 (PRC1), led to dramatic deficiencies in forelimb formation.
RING1 proteins contribute to early proximal-distal specification of the forelimb bud by restricting Meis2 expression.
Specimen part
View SamplesIn this study we analyzed the effect of overexpression of an HA-tagged version of the ERF RAP2.12 on the transcriptome levels in aerobic and hypoxic-treated (O2 21% and 1%, respectively) Arabidopsis thaliana rosettes.
Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization.
Treatment
View Samples