NCoR and SMRT are two paralogous vertebrate proteins that function as corepressors with unliganded nuclear receptors. Although C. elegans has a large number of nuclear receptors, orthologues of the corepressors NCoR and SMRT have not unambiguously been identified in Drosophila or C. elegans. Here, we identify GEI-8 as the closest homologue of NCoR and SMRT in C. elegans and demonstrate that GEI-8 is expressed as at least two isoforms throughout development in multiple tissues, including neurons, muscle and intestinal cells. We demonstrate that a homozygous deletion within the gei-8 coding region, which is predicted to encode a truncated protein lacking the predicted NR domain, results in severe mutant phenotypes with developmental defects, slow movement and growth, arrested gonadogenesis and defects in cholinergic neurotransmission. Whole genome expression analysis by microarrays identified sets of de-regulated genes consistent with both the observed mutant phenotypes and a role of GEI-8 in regulating transcription. Interestingly, the upregulated transcripts included a predicted mitochondrial sulfide:quinine reductase encoded by Y9C9A.16. This locus also contains non-coding, 21-U RNAs of the piRNA. Inhibition of the expression of the region coding for 21-U RNAs leads to irregular gonadogenesis in the homozygous gei-8 mutants, but not in an otherwise wild-type background, suggesting that GEI-8 may function in concert with the 21-U RNAs to regulate gonadogenesis. Our results confirm that GEI-8 is the orthologue of the vertebrate NCoR/SMRT corepressors and demonstrate important roles for this putative transcriptional corepressor in development and neuronal function.
GEI-8, a homologue of vertebrate nuclear receptor corepressor NCoR/SMRT, regulates gonad development and neuronal functions in Caenorhabditis elegans.
No sample metadata fields
View SamplesComparison of global transcription profiles in mouse E12.5 embryonic lung from Shh-Cre;Sin3a flox/+ control with Shh-Cre;Sin3a flox/flox revealed a large change genes due to loss of Sin3a in early lung development. Overall design: Examination of 2 different transcriptomes in 2 genotypes with three replicates.
Sin3a regulates epithelial progenitor cell fate during lung development.
Specimen part, Subject
View SamplesNHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in C. elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical coregulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.
NHR-23 dependent collagen and hedgehog-related genes required for molting.
Specimen part
View SamplesmRNA profiles of thousands of human tumors are available, but methods to deduce oncogenic signaling networks from these data lag behind. It is especially challenging to identify main-regulatory routes, and to generalize conclusions obtained from experimental models. We designed the bioinformatic platform R2 (http://r2.amc.nl) in parallel with a wet-lab approach of neuroblastoma. Here we demonstrate how R2 facilitates an integrated analysis of our neuroblastoma data. Analysis of the MYCN pathway suggested important regulatory connections to the polyamine synthesis route, the Notch pathway and the BMP/TGF pathway. A network of genes emerged connecting major oncogenes in neuroblastoma. Genes in the network carried strong prognostic values and were essential for tumor cell survival.
Deoxyhypusine synthase (DHPS) inhibitor GC7 induces p21/Rb-mediated inhibition of tumor cell growth and DHPS expression correlates with poor prognosis in neuroblastoma patients.
Specimen part, Cell line
View SamplesmRNA profiles of thousands of human tumors are available, but methods to deduce oncogenic signaling networks from these data lag behind. It is especially challenging to identify main-regulatory routes, and to generalize conclusions obtained from experimental models. We designed the bioinformatic platform R2 (http://r2.amc.nl) in parallel with a wet-lab approach of neuroblastoma. Here we demonstrate how R2 facilitates an integrated analysis of our neuroblastoma data. Analysis of the MYCN pathway suggested important regulatory connections to the polyamine synthesis route, the Notch pathway and the BMP/TGF pathway. A network of genes emerged connecting major oncogenes in neuroblastoma. Genes in the network carried strong prognostic values and were essential for tumor cell survival.
Deoxyhypusine synthase (DHPS) inhibitor GC7 induces p21/Rb-mediated inhibition of tumor cell growth and DHPS expression correlates with poor prognosis in neuroblastoma patients.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Sexually dimorphic genome-wide binding of retinoid X receptor alpha (RXRα) determines male-female differences in the expression of hepatic lipid processing genes in mice.
Sex, Age, Specimen part
View SamplesAnalysis of gender differential gene expression levels in mouse liver.
Sexually dimorphic genome-wide binding of retinoid X receptor alpha (RXRα) determines male-female differences in the expression of hepatic lipid processing genes in mice.
Sex, Age, Specimen part
View SamplesIn the absence of p63 expression, the epidermis fails to commit to stratification, resulting in aborted skin development. In this study, gene expression profiles of E18.5 p63 null and wt skin, were compared in an effort to identify genes that are directly or indirectly regulated by p63.
TAp63alpha induces AP-2gamma as an early event in epidermal morphogenesis.
No sample metadata fields
View SamplesNeuroblastoma is a pediatric tumor of the peripheral sympathetic nervous system with a highly variable prognosis. Activation of the PI3K/AKT pathway in neuroblastoma is correlated with poor patient prognosis, but the precise downstream effectors mediating this effect have not been determined. Here, we identify the forkhead transcription factor FOXO3a as a key target of the PI3K/AKT pathway in neuroblastoma. FOXO3a expression was elevated in low stage neuroblastoma tumors and normal embryonal neuroblasts, but reduced in late stage neuroblastoma. Inactivation of FOXO3a by AKT was essential for neuroblastoma cell survival. Treatment of neuroblastoma cells with the dual PI3K/mTOR inhibitor PI-103 activated FOXO3a and triggered apoptosis. This effect was rescued by FOXO3a silencing. Conversely, apoptosis induced by PI-103 or the AKT inhibitor MK-2206 was potentiated by FOXO3a overexpression. Further, levels of total or phosphorylated FOXO3a correlated closely with apoptotic sensitivity to MK-2206. In clinical specimens, there was an inverse relationship between gene expression signatures regulated by PI3K signaling and FOXO3a transcriptional activity. Moreover, high PI3K activity and low FOXO3a activity were each associated with an extremely poor prognosis. Our work indicates that expression of FOXO3a and its targets offer useful prognostic markers as well as biomarkers for PI3K/AKT inhibitor efficacy in neuroblastoma.
FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma.
Specimen part, Cell line, Treatment
View SamplesThe development of the epidermis, a stratified squamous epithelium, is dependent on the regulated differentiation of keratinocytes. Differentiation begins with the initiation of stratification, a process tightly controlled through proper gene expression. AP-2 is expressed in skin and previous research suggested a pathway where p63 gene induction results in increased expression of AP-2 which in turn is responsible for induction of K14. This study uses a conditional gene ablation model to further explore the role of AP-2 in skin development. Mice deficient for AP-2 exhibited delayed expression of p63, K14, and K1, key genes required for development and differentiation of the epidermis. In addition, microarray analysis of E16.5 skin revealed delayed expression of additional late epidermal differentiation genes: filaggrin, repetin and secreted Ly6/Plaur domain containing 1, in mutant mice. The genetic delay in skin development was further confirmed by a functional delay in the formation of an epidermal barrier. These results document an important role for AP-2 in skin development, and reveal the existence of regulatory factors that can compensate for AP-2 in its absence.
Disruption of epidermal specific gene expression and delayed skin development in AP-2 gamma mutant mice.
No sample metadata fields
View Samples