refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE42358
Transcriptome analysis of CD16/CD62L neutrophil subsets during human experimental endotoxemia
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

During systemic inflammation, different neutrophil subsets are mobilized to the blood circulation. These neutrophil subsets can be distinguished from normal circulating neutrophils (CD16bright/CD62Lbright) based on either an immature CD16dim/CD62Lbright or a CD16bright/CD62Ldim phenotype. Interestingly, the latter neutrophil subset is known to suppress lymphocyte proliferation ex vivo, but the underlying mechanism is largely unknown.

Publication Title

IFN-γ-stimulated neutrophils suppress lymphocyte proliferation through expression of PD-L1.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE35590
Transcriptome kinetics of circulating neutrophils during human experimental endotoxemia
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Polymorphonuclear cells (neutrophils) play an important role in the systemic inflammatory response syndrome and the development of sepsis. These cells are essential for the defense against microorganisms, but may also cause tissue damage. Therefore, neutrophil numbers and activity are considered to be tightly regulated. Previous studies have investigated gene transcription during experimental endotoxemia in whole blood and peripheral blood mononuclear cells. However, the gene transcription response of the circulating pool of neutrophils to systemic inflammatory stimulation in vivo is currently unclear. We examined neutrophil gene transcription kinetics in healthy human subjects (n=4) administered a single dose of endotoxin (LPS, 2 ng/kg iv). In addition, freshly isolated neutrophils were stimulated ex vivo with LPS, TNF, G-CSF and GM-CSF to identify stimulus-specific gene transcription responses. Whole transcriptome microarray analysis of circulating neutrophils at 2, 4 and 6 hours after LPS infusion revealed activation of inflammatory networks which are involved in signaling of TNF and IL-1 and IL-1. The transcriptome profile of inflammatory activated neutrophils in vivo reflects extended survival and regulation of inflammatory responses. We show that these changes in neutrophil transcriptome are most likely due to a combination of early activation of circulating neutrophils by TNF and G-CSF and a mobilization of young neutrophils from the bone marrow.

Publication Title

Transcriptome kinetics of circulating neutrophils during human experimental endotoxemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP090298
Epigenome maps of time-resolved monocyte to macrophage differentiation and innate immune memory (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 80 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as LPS. We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time dependent manner. ChIP-seq, RNA-seq, WGBS and ATAC-seq data were generated. This analysis identified epigenetic programs in tolerance and trained macrophages, and the potential transcription factors involved. Overall design: Time-course in vitro culture of human monocytes. Two innate immune memory states can be induced in culture through an initial exposure of primary human monocytes to either LPS or BG for 24 hours, followed by removal of stimulus and differentiation to macrophages for an additional 5 days. Cells were collected at baseline (day 0), 1 hour, 4 hour, 24 hour and 6 days.

Publication Title

β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact