siSTAT3 knockdown of a tamoxifen initiated, transformation inducible, breast cancer model system (MCF10A-ER-Src), with associated controls of EtOH and siNEG treatments.
STAT3 acts through pre-existing nucleosome-depleted regions bound by FOS during an epigenetic switch linking inflammation to cancer.
Cell line, Treatment
View SamplesTo identify gene(s) that are modified in their relative expression levels in the Potocki-Lupski Syndrome mouse model and map to the rearranged region, i.e. possible candidate genes at the source of the PTLS-like phenotypes shown by the PTLS mouse, we comp
Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki-Lupski syndrome.
No sample metadata fields
View SamplesWe find that treating mesenchymal NAMEC8 cells with cholera toxin (CTx) to elevate intracellular cAMP levels and activate PKA induces a mesenchymal-to-epithelial transition whereby the cells assume an epithelial state (N8-CTx). NAMEC8 cells undergo epigenetic reprogramming triggered by active PHF2, a histone demethylase, which demethylates H3K9me2 and H3K9me3 regions of epithelial genes silencing in the mesenchymal state Overall design: Performing RNASeq with HMLE (immortalized human mammary epithelial cells), their mesenchymal CD44hi counterparts, NAMEC8 and the CTx-reverted versions of NAMEC8 a.k.a N8-CTx
Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability.
No sample metadata fields
View SamplesWe sought to determine whether Ldh activity in SCC tumors is a marker of the cell type from which these cells arise, or a key metabolic activity important for tumor initiation or progression. Here we show that genetic abrogation of Ldh enzyme activity in HFSC-mediated tumorigenesis had no effect on tumor number, time to tumor formation, tumor proliferation, epithelial to mesenchymal transition in tumors, gene expression in tumors, tumor pathology, or the immune response to tumors. Overall design: Examination of mRNA profile of five LDHA knockout mice vs five wild type (WT) mice using Illumina HiSeq2500.
Increased lactate dehydrogenase activity is dispensable in squamous carcinoma cells of origin.
Specimen part, Subject
View SamplesThe EMT program allows epithelial cells to become endowed with motility, invasiveness and stem cell traits. We investigated difference in signaling networks that are differentially utilized in EMTed and non-EMTed cells, thereby identifying therapeutic targets that are unique to EMT/cancer stem cells.
Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells.
No sample metadata fields
View SamplesWe performed a genome-scale CRISPR screen in a KRAS-mutant pancreatic cancer cell line treated with the MEK inhibitor trametinib, and found that loss of the transcriptional repressor CIC confers resistance to MEK inhibition. We determined that CIC loss also confers resistance to MEK or BRAF inhibition in lung cancer, colorectal cancer, and melanoma cell lines with mutant RAS or BRAF. CIC is a transcriptional repressor that is phosphorylated and inhibited by the MAPK pathway. We hypothesized that inhibition of the MAPK pathway would lead to activation of CIC and repression of CIC target genes. Loss of CIC would therefore restore expression of these genes, conferring drug resistance. To identify the relevant CIC target genes that mediate trametinib resistace, we generated 4 Cas9-expressing cell lines from different lineages and with different RAS or RAF mutations, and generated control (gGFP) or CIC-knockout (gCIC) cell lines. We treated cells with DMSO or trametinib for 24 hours, and performed NRA-seq. We found that trametinib treatment reduces expression of at least one member of the PEA3 family of ETS transcription factors (ETV1, ETV4, and ETV5) in all cell lines assessed, and that loss of CIC results in maintained expression of these genes despite MEK inhibition. We further validated that ETV1, 4, and 5 expression was necessary for resistance mediated by CIC loss; and that ETV1, 4, or 5 expression was sufficient to confer trametinib resistance. Overall design: 4 Cas9-expressing human cancer cell lines (A549, CALU1, HCT116, PATU8902) were used to generate 3 isogenic cell lines with intact CIC (gGFP-1) or knocked out CIC (gCIC-1 or gCIC-2). Each of these 12 cell lines were treated with DMSO or trametinib for 24 hours (duplicates)
ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition.
No sample metadata fields
View SamplesCancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival in the setting of KRAS suppression. In this model, the transcriptional co-activator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling.
KRAS and YAP1 converge to regulate EMT and tumor survival.
Cell line
View SamplesCancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival in the setting of KRAS suppression. In this model, the transcriptional co-activator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling Overall design: Three biological replicates of primary lung adenocarcinoma cells derived from the Kras Lox-STOP-Lox-G12D;p53flox/flox (KP) mouse lung cancer model into which a doxycycline-inducible shRNA targeting Kras expressed from the 3’UTR of GFP was introduced (KP-KrasA cells) were analyzed at timepoints (days) D0, D4, and D21.
KRAS and YAP1 converge to regulate EMT and tumor survival.
No sample metadata fields
View SamplesHuman ILCs are classically categorized into five subsets; cytotoxic CD127-CD94+ NK cells and non-cytotoxic CD127+CD94-, ILC1s, ILC2s, ILC3s and LTi cells. Here, we identify a novel subset within the CD127+ ILC population, characterized by the expression of the cytotoxic marker CD94. These CD94+ ILCs strongly resemble conventional ILC3s in terms of phenotype, transcriptome and cytokine production, but are highly cytotoxic. IL-15 was unable to induce differentiation of CD94+ ILCs towards mature NK cells. Instead, CD94+ ILCs retained RORγt, CD127 and CD200R expression and produced IL-22 in response to IL-15. Culturing non-cytotoxic CD127+ ILC1s or ILC3s with IL-12 induced upregulation of CD94 and cytotoxic activity, effects that were not observed with IL-15 stimulation. Thus, human helper ILCs can acquire a cytotoxic program without differentiating into NK cells.
Identification of human cytotoxic ILC3s.
Specimen part, Subject
View SamplesSW480 cells were treated with 2uM crizotinib for 72h (versus DMSO) Overall design: Examination of differential up- or down-regulated genes after crizotinib treatment
Global survey of the immunomodulatory potential of common drugs.
Cell line, Subject
View Samples