A control vs. genetic knockout experiment aimed at determining what RNAs are upregulated or downregulated in e11.5 mouse proximal limb tissue lacking the Lmx1b gene. Because Lmx1b is required for dorsal-ventral patterning of the limb, this screen gives insight into what putative downstream targets of Lmx1b contribute to dorsal-ventral patterning.
Identification of genes controlled by LMX1B in the developing mouse limb bud.
No sample metadata fields
View SamplesA diverse pool of RNAs remain encapsulated within the transcriptionally and translationally silent spermatozoon. These transcripts persist within the male gamete despite the dramatic reduction in cellular volume achieved through expulsion of the cytoplasm and quite possibly the nucleoplasm. The precise location of RNAs retained within the sperm cell remains largely unknown. However, early evidence suggested that many are embedded within the nucleus (1). To discern the global pattern of transcript compartmentalization in sperm, total RNA was extracted from whole mouse spermatozoa and detergent demembranated nuclei fractionated through a sucrose gradient. Isolated RNAs were subjected to RNA-sequencing (RNA-seq) and their abundance used to infer localization. Transcripts enriched in the unfractionated cells were related to the production and function of mitochondria and surprisingly, exosomes. The absence of these extracellular vesicles associated RNAs within the inner-nuclear compartment was suggestive of an origin other than sperm. This contributes to the growing evidence for sperm-bound exosomes rich in RNA. In comparison, the majority of the remaining sperm RNAs were associated with the nucleus. This included the abundant fragmented ribosomal transcripts which likely persist between the nuclear envelope and the perinuclear theca. The spermatozoal inner-nuclear compartment was also enriched in repetitive transcribed sequences. This included LINE elements and simple repeat sequences both of which have been shown to contribute to chromatin structure in other cell types suggesting that they may serve parallel roles in the spermatozoon. Overall design: RNA-seq analysis of whole mouse sperm and fractionated nuclei
The protein and transcript profiles of human semen.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of artifactual microarray probe signals constantly present in multiple sample types.
Specimen part
View SamplesThe correlation of the RNA profiles obtained by microarray analysis was compared with that obtained from RNA-Seq by using reduced complexity sperm datasets. This resolved as a series of discordant probes. The extent of discordancy among other datasets was then determined.
Identification of artifactual microarray probe signals constantly present in multiple sample types.
Specimen part
View SamplesThe correlation of the RNA profiles obtained by microarray analysis was compared with that obtained from RNA-Seq by using reduced complexity sperm datasets. This resolved as a series of discordant probes. The extent of discordancy among other datasets was then determined. Overall design: A correlative study between probe’s signal intensity from Illumina bead arrays with its transcript level detected by next generation sequencing technique was performed. RNAs from sperm and testis samples were applied
Identification of artifactual microarray probe signals constantly present in multiple sample types.
Specimen part, Subject
View SamplesTranscriptome of testes was examined for comparison of transcript abundance with that of sperm/seminal fluid (as sequenced in separate study) Overall design: Commercially available (Ambion) human testes RNA was prepared and sequenced in two replicates
Nuclease Footprints in Sperm Project Past and Future Chromatin Regulatory Events.
No sample metadata fields
View SamplesRNA-Seq technique was applied to investigate the effects of four cDNA amplification kits and two RNA-Seq library preparation kits to the deep sequencing results at different perspectives. Overall design: The same set of semen samples were applied to investigate the qualitative and quantitative effect of four cDNA amplification methods and two RNA-Seq library preparation methods on sperm transcript profiling.
A comparison of sperm RNA-seq methods.
No sample metadata fields
View SamplesIt is often overlooked that human ESCs are generated from in vitro cultured, often surplus/discard, embryos considered unsuitable for transfer in infertility clinics. In vitro culture of preimplantation embryos has been associated with a number of perturbations, including ultrastructure, gene expression, metabolism and post-transfer development. We report here the transcriptional profiles characteristic of ESC lines generated from either in vitro cultured or in vivo derived embryos.
Transcriptional differences between rhesus embryonic stem cells generated from in vitro and in vivo derived embryos.
Specimen part
View SamplesPurpose: the goal of this study was to test whether the amounts of genome-encoded Line-1s are influenced by TUTases and Mov10 Methods: RNA-Seq data were obtained for PA-1 or Hek293 Flp-IN T-Rex cells in which wild-type or mutant TUTases or Mov10 were overexpressed or the proteins were depleted by RNA interference Results: Minor changes (less than 0.4-fold) were observed in the amounts of mRNAs of Homo sapiens-specific Line-1 families in Hek293 Flp-IN T-Rex and PA-1 either overexpressing or depleted of TUTases and Mov10 Overall design: LINE-1 repetitive elements profiles of Hek293 Flp-IN T-Rex and PA-1 generated by deep sequencing, in triplicate, using Illumina NextSeq 500 and Illumina HiSeq 2500.
Uridylation by TUT4/7 Restricts Retrotransposition of Human LINE-1s.
Cell line, Subject
View SamplesNumerous studies have shown the potential of spermatozoal RNAs to delineate failures of spermatogenic pathways in infertile samples. However, the RNA contribution of normal fertile samples still needs to be established in relation to transcripts consistently present in human spermatozoa. We report here the spermatozoal transcript profiles characteristic of 24 normally fertile individuals. RNA was extracted from the purified sperm cells of ejaculate and hybridized to Illumina Human-8 BeadChip Microarrays
Identification of human sperm transcripts as candidate markers of male fertility.
No sample metadata fields
View Samples