RNA sequencing technology has been carried out in order to evaluate mRNA expression changes after manipulation of miR-26a in both MCF-7 and MDA-MB-231 breast cancer cell lines. Overall design: To evaluate the entire set of genes modulated by miR-26a in breast cancer, we performed RNA-seq after ectopic manipulation of this miRNA. We over-expressed miR-26a in MCF-7 epithelial cancer cell lines and also reduced its activity by stably transfecting MDA-MB-231 mesenchymal-like cancer cell lines with a specific sponge vector. GO terms and pathway enriched analysis of the transcripts that significantly change upon miR-26 ectopic manipulation implicates miR-26ab in cell cycle, apoptosis, cell spreading and cell adhesion in breast cancer
Sustained expression of miR-26a promotes chromosomal instability and tumorigenesis through regulation of CHFR.
Specimen part, Cell line, Subject
View SamplesIPH-926 is an anticancer drug-resistant tumor cell line derived from a chemo-refractory human infiltrating lobular breast cancer (ILBC). IPH-926 ILBC cells were subjected to gene expression profiling using an Affymetrix HG U133 Plus 2.0 array.
ABCB1/MDR1 contributes to the anticancer drug-resistant phenotype of IPH-926 human lobular breast cancer cells.
Specimen part, Cell line
View SamplesHuman solid tumors contain rare cancer side population (SP) cells, which expel the fluorescencent dye H33342 and display cancer stem cell characteristics. Transcriptional profiling of cancer SP cells isolated by H33342 fluorescence analysis is a newly emerging approach to discover cancer stem cell markers and aberrant differentiation pathways. Using Affymetrix expression microarrays this study investigated differential gene expression between SP and non-SP (NSP) cells isolated from the CAL-51 human mammary carcinoma cell line.
Down-regulation of the fetal stem cell factor SOX17 by H33342: a mechanism responsible for differential gene expression in breast cancer side population cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression.
Specimen part, Subject
View SamplesmiRNAs are known to be involved in PDAC tumorigenesis, but only a few biologically relevant gene targets have been identified.
MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression.
Specimen part, Subject
View SamplesIsocitrate dehydrogenase 1 mutations drive human gliomagenesis, probably through neomorphic enzyme activity that produces D-2-hydroxyglutarate. To model this disease, we conditionally expressed Idh1R132H in the subventricular zone (SVZ) of the adult mouse brain. The mice developed hydrocephalus and grossly dilated lateral ventricles, with accumulation of 2-hydroxyglutarate and reduced -ketoglutarate. Stem and transit amplifying/progenitor cell populations were expanded, and proliferation increased.Cells expressing SVZ markers infiltrated surrounding brain regions. SVZ cells also gave rise to proliferative subventricular nodules. DNA methylation was globally increased, while hydroxymethylation was decreased. Mutant SVZ cells over-expressed Wnt, cell cycle and stem cell genes, and shared an expression signature with human gliomas. Idh1R132H mutation in the major adult neurogenic stem cell niche causes a phenotype resembling gliomagenesis. Isocitrate dehydrogenase 1 mutations drive human gliomagenesis, probably through neomorphic enzyme activity that produces D-2-hydroxyglutarate. To model this disease, we conditionally expressed Idh1R132H in the subventricular zone (SVZ) of the adult mouse brain. The mice developed hydrocephalus and grossly dilated lateral ventricles, with accumulation of 2-hydroxyglutarate and reduced -ketoglutarate. Stem and transit amplifying/progenitor cell populations were expanded, and proliferation increased. Cells expressing SVZ markers infiltrated surrounding brain regions. SVZ cells also gave rise to proliferative subventricular nodules. DNA methylation was globally increased, while hydroxymethylation was decreased. Mutant SVZ cells over-expressed Wnt, cell cycle and stem cell genes, and shared an expression signature with human gliomas. Idh1R132H mutation in the major adult neurogenic stem cell niche causes a phenotype resembling gliomagenesis.
Expression of Idh1<sup>R132H</sup> in the Murine Subventricular Zone Stem Cell Niche Recapitulates Features of Early Gliomagenesis.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Characterization of genomic imbalances in diffuse large B-cell lymphoma by detailed SNP-chip analysis.
Sex, Age
View SamplesThe pathogenesis of diffuse large B cell lymphomas (DLBCL) is only partly understood. We analyzed 148 DLBCL by high resolution single nucleotide polymorphism (SNP)-chips to characterize genomic imbalances. Seventy-nine cases were of the germinal center B-cell like (GCB) type of DLBCL, 49 of the activated B-cell like (ABC) subtype and 20 were type 3 DLBCL. Twenty-four regions of recurrent genomic gains and 38 regions of recurrent genomic losses were identified over the whole cohort, with a median of 25 imbalances per case for ABC-DLBCL and 19 per case for GCB-DLBCL. Several recurrent copy number changes showed differential frequencies in the GCB- and ABC-DLBCL subgroups, including gains of HDAC7A predominantly in GCB-DLBCL (38% of cases) and losses of BACH2 and CASP8AP2 predominantly in ABC-DLBCL (35%), hinting at disparate pathogenetic mechanisms in these entities. Correlating gene expression and copy number revealed a strong gene dosage effect in all tumors, with 34% of probesets showing a concordant expression change in affected regions. Two new potential tumor suppressor genes emerging from the analysis, CASP3 and IL5RA, were sequenced in 10 and 16 candidate cases, respectively. However, no mutations were found, pointing to a potential haploinsufficiency effect of these genes, considering their reduced expression in cases with deletions. This work thus describes differences and similarities in the landscape of genomic aberrations in the DLBCL subgroups in a large collection of cases, confirming already known targets, but also discovering novel copy number changes with possible pathogenetic relevance.
Characterization of genomic imbalances in diffuse large B-cell lymphoma by detailed SNP-chip analysis.
Sex, Age
View SamplesHair follicle formation depends on reciprocal epidermal-dermal interactions and occurs during skin development, but not in adult life. This suggests that the properties of dermal fibroblasts change during postnatal development. To examine this, we used a PdgfraEGFP mouse line to isolate GFP-positive fibroblasts from neonatal skin, adult telogen and anagen skin and adult skin in which ectopic hair follicles had been induced (EF skin) by transgenic epidermal activation of beta-catenin. We also isolated epidermal cells from each mouse. The gene expression profile of EF epidermis was most similar to that of anagen epidermis, consistent with activation of beta-catenin signalling. In contrast, adult dermis with ectopic hair follicles more closely resembled neonatal dermis than adult telogen or anagen dermis. In particular, genes associated with mitosis were upregulated and extracellular matrix-associated genes were downregulated in neonatal and EF fibroblasts. We confirmed that sustained epidermal beta-catenin activation stimulated fibroblasts to proliferate to reach the high cell density of neonatal skin. In addition, the extracellular matrix was comprehensively remodelled, with mature collagen being replaced by collagen subtypes normally present only in developing skin. The changes in proliferation and extracellular matrix composition originated from a specific subpopulation of fibroblasts located beneath the sebaceous gland. Our results show that adult dermis is an unexpectedly plastic tissue that can be reprogrammed to acquire the molecular, cellular and structural characteristics of neonatal dermis in response to cues from the overlying epidermis.
Reprogramming adult dermis to a neonatal state through epidermal activation of β-catenin.
No sample metadata fields
View SamplesBefore and after anaerobic Fe(II) shocked WT and ?bqsR of late stationary phase P. aeruginosa PA14 strains Associated publication: Kreamer NN, Costa F, Newman DK. 2015. The ferrous iron-responsive BqsRS two-component system activates genes that promote cationic stress tolerance. mBio 6(1):e02549-14. doi:10.1128/mBio.02549-14. Overall design: Expression profiles of rRNA-depleted total RNA from WT and ?bqsR Fe(II)-shocked (before and after 30 min incubation with 200 µM ferrous ammonium sulfate ) cultures grown anaerobically to deep stationary phase (A500 = 0.8) in Fe-limited (1 µM ferrous ammonium sulfate) MOPS minimal medium containing succinate as the carbon source, in triplicate
The ferrous iron-responsive BqsRS two-component system activates genes that promote cationic stress tolerance.
Cell line, Subject
View Samples