Hair follicle formation depends on reciprocal epidermal-dermal interactions and occurs during skin development, but not in adult life. This suggests that the properties of dermal fibroblasts change during postnatal development. To examine this, we used a PdgfraEGFP mouse line to isolate GFP-positive fibroblasts from neonatal skin, adult telogen and anagen skin and adult skin in which ectopic hair follicles had been induced (EF skin) by transgenic epidermal activation of beta-catenin. We also isolated epidermal cells from each mouse. The gene expression profile of EF epidermis was most similar to that of anagen epidermis, consistent with activation of beta-catenin signalling. In contrast, adult dermis with ectopic hair follicles more closely resembled neonatal dermis than adult telogen or anagen dermis. In particular, genes associated with mitosis were upregulated and extracellular matrix-associated genes were downregulated in neonatal and EF fibroblasts. We confirmed that sustained epidermal beta-catenin activation stimulated fibroblasts to proliferate to reach the high cell density of neonatal skin. In addition, the extracellular matrix was comprehensively remodelled, with mature collagen being replaced by collagen subtypes normally present only in developing skin. The changes in proliferation and extracellular matrix composition originated from a specific subpopulation of fibroblasts located beneath the sebaceous gland. Our results show that adult dermis is an unexpectedly plastic tissue that can be reprogrammed to acquire the molecular, cellular and structural characteristics of neonatal dermis in response to cues from the overlying epidermis.
Reprogramming adult dermis to a neonatal state through epidermal activation of β-catenin.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages.
Specimen part
View SamplesThe experiment describes the dynamic transcriptional alterations in brains of ME7- infected, and age-matched, mock-inoculated mice immediatly before inoculation, at two important preclinical time points and at terminal stages.
Transcriptome analysis reveals altered cholesterol metabolism during the neurodegeneration in mouse scrapie model.
Sex, Age, Specimen part, Subject, Time
View SamplesCrosstalk between Aryl hydrocarbonreceptor (AHR) and Estrogen receptor (ER) is poorly understood, but seems to play a major role in female reproductive organs.
Cross-Talk in the Female Rat Mammary Gland: Influence of Aryl Hydrocarbon Receptor on Estrogen Receptor Signaling.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.
Specimen part, Treatment
View SamplesRecent studies have identified Zeb2 as a transcription factor important for the final maturation of natural killer cells and effector CD8+ T cells. We show that Zeb2 is required for the development of two myeloid cell types, the monocyte and the plasmacytoid dendritic cell, and clarify that this factor is not required for the development of classical dendritic cells.
Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.
Specimen part, Treatment
View SamplesPurpose: identification of mRNAs that are potential targets of miR-203 in the endometrium and endometrial carcinoma Methods: mRNA profiles of three batches of wild-type (WT) and three independently generated miR-203 knockout (miR-203 KO) RUCA-I cells were produced by deep sequencing, using Illumina HiSeq 2500. The sequence reads that passed quality filters were analyzed at the transcript isoform level with TopHat followed by Cufflinks. Results: Using an optimized data analysis workflow, we mapped between 30 and 50 million sequence reads per sample to the rat genome (build rn6) and identified 26751 transcripts of which 1591 are differentially expressed in WT and miR-203 KO cells (p<0.05). Overall design: mRNA profiles of three WT batches and three independently generated miR-203 KO RUCA-I rat endometrial adenocarcinoma cell lines were produced by deep sequencing, using Illumina HiSeq2500.
Role of miR-203 in estrogen receptor-mediated signaling in the rat uterus and endometrial carcinoma.
No sample metadata fields
View SamplesThis experiment series addresses the role of coactivator SRC-1/NcoA-1 for the induction of interleukin-6 (IL-6) target genes in HepG2 cells. For that purpose, HepG2 human hepatocellular carcinoma cells were manipulated to stably express an shRNA that knocks down SRC-1 expression yielding the HepG2-Src1 cells. Either unmanipulated HepG2 or HepG2-Src1 cells were then treated for various periods with IL-6.
Co-activator SRC-1 is dispensable for transcriptional control by STAT3.
No sample metadata fields
View SamplesRecent studies have identified Zeb2 as a transcription factor important for the final maturation of natural killer cells and effector CD8+ T cells. We show that Zeb2 is required for the development of two myeloid cell types, the monocyte and the plasmacytoid dendritic cell, and clarify that this factor is not required for the development of classical dendritic cells.
Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate.
Specimen part
View SamplesMammalian epidermal stem cells maintain homeostasis of skin epidermis and contribute to its regeneration throughout adult life. While two-dimensional mouse epidermal stem cell cultures have been established decades ago, a long-term, feeder cell- and serum-free culture system recapitulating murine epidermal architecture has not been available. Here we describe an epidermal organoid culture system that allows long-term, genetically stable expansion of adult epidermal stem cells. Our epidermal expansion media combines atypically high calcium concentrations, activation of cyclic AMP, FGF and R-spondin signaling with inhibition of BMP signaling. Organoids are established robustly from adult mouse skin and expand over at least 6 months, while maintaining the basal-apical organization of the mouse interfollicular epidermis. The system represents a powerful tool to study epidermal homeostasis and disease in vitro. Overall design: We establish an organoid culture system for long-term expansion of mouse epidermal stem cells. Using histological methods as well as low-coverage multiplexed RNA sequencing, we show that cultured organoids resembled interfollicular epidermis. We analyzed a total of 23 samples, including 6 controls that are isolated from the skin of mice. None-passaged as well as cultured organoids were compared with replicates. Differences growth factors and small molecules that allow expansion of organoids were compared with replicates.
Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures.
Cell line, Subject
View Samples