Illumina expression microarray analysis of TCam-2, 2102EP, NCCIT, JAR, MPAF, ARZ and FS1 cells 8 and 16 h after 10 nanomolar romidepsin application. DMSO treated cells were used as controls. These data are part of the article 'A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment' (Nettersheim et al., 2016).
A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment.
Cell line
View SamplesIllumina expression microarray analysis of shRNA-mediated PRAME knock down TCam-2 cells with and without all trans retinoic acid (ATRA) treatment for 8 days, of TCam-2 cells with and without ATRA (8d) and of in vitro cultivated GCC cell lines TCam-2, 2102EP, NCCIT and JAR. These data are part of the article 'The Cancer / Testis-Antigen PRAME supports the pluripotency network and represses somatic and germ cell differentiation programs in seminomas'.
The cancer/testis-antigen PRAME supports the pluripotency network and represses somatic and germ cell differentiation programs in seminomas.
Specimen part, Cell line
View SamplesHighly quantitative biomarkers of neurodegenerative disease remain an important need in the urgent quest for disease modifying therapies. For Huntington's disease (HD), a genetic test is available (trait marker), but necessary state markers are still in development. In this report, we describe a large battery of transcriptomic tests explored as state biomarker candidates. In an attempt to exploit the known neuroinflammatory and transcriptional perturbations of disease, we measured relevant mRNAs in peripheral blood cells. The performance of these potential markers was weak overall, with only one mRNA, immediate early response 3 (IER3), showing a modest but significant increase of 32% in HD samples compared to controls. No statistically significant differences were found for any other mRNAs tested, including a panel of 12 RNA biomarkers identified in a previous report [Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM, Hogarth P, Bouzou B, Jensen RV et al. (2005) Proc Natl Acad Sci U S A 102: 11023-11028]. The present results may nonetheless inform the future design and testing of HD biomarker strategies.
Analysis of potential transcriptomic biomarkers for Huntington's disease in peripheral blood.
No sample metadata fields
View SamplesType II testicular germ cell cancers (GCC) are the most frequently diagnosed tumors in young men (20 - 40 years) and are classified as seminoma or non-seminoma. GCCs are commonly treated by orchiectomy and chemo- or radiotherapy. However, a subset of metastatic non-seminomas display only incomplete remission or relapse and require novel treatment options. Recent studies have shown effective application of the small-molecule inhibitor JQ1 in tumor therapy, which interferes with the function of bromodomain and extra-terminal (BET)-proteins. Here, we demonstrate that upon JQ1 doses 250 nM GCC cell lines and Sertoli cells display compromised survival and induction of cell cycle arrest. JQ1 treated GCC cell lines display upregulation of genes indicative for DNA damage and a cellular stress response. Additionally, downregulation of pluripotency factors and induction of mesodermal differentiation was detected. GCCs xenografted in vivo showed a reduction in tumor size, proliferation and angiogenesis when subjected to JQ1 treatment. The combination of JQ1 and the histone deacetylase inhibitor romidepsin further enhanced the apoptotic effect in vitro and in vivo. Thus, we propose that JQ1 alone, or in combination with romidepsin may serve as a novel therapeutic option for GCCs.
The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo.
Specimen part, Cell line, Time
View SamplesA hallmark of adult hematopoiesis is the continuous replacement of blood cells with limited lifespans. While active hematopoietic stem cell (HSC) contribution to multilineage hematopoiesis is the foundation of clinical HSC transplantation, recent reports have questioned the physiological contribution of HSCs to normal/steady-state adult hematopoiesis. Here, we use inducible lineage tracing from genetically marked adult HSCs and reveal robust HSC-derived multilineage hematopoiesis. This commences via defined progenitor cells, but varies substantially in between different hematopoietic lineages. By contrast, adult HSC contribution to hematopoietic cells with proposed fetal origins is neglible. Finally, we establish that the HSC contribution to multilineage hematopoiesis declines with increasing age. Therefore, while HSCs are active contributors to native adult hematopoiesis, it appears that the numerical increase of HSCs is a physiologically relevant compensatory mechanism to account for their reduced differentiation capacity with age Overall design: Lineage tracing from adult/aged HSCs in steady state
Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging.
Age, Specimen part, Cell line, Subject
View SamplesWe applied a deep-sequencing based method – digital gene expression profiling (DGEP), to investigate gene expression in interscapular brown adipose tissue (iBAT), inguinal white adipose tissue (iWAT) and epididymal white adipose tissue (eWAT) in acute cold exposure Overall design: Examination of gene expression level in 3 different adipose tissues in 3 time points, day0, day2 and day4 in cold exposure.
Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism.
No sample metadata fields
View SamplesDeregulation of cytokine- and growth factor signaling due to altered expression of endogenous regulators is well recognized in prostate and other cancers. Suppressor of cytokine signaling 2 (SOCS2) is a key regulator of growth hormone, IGF and prolactin signaling, that have been implicated in carcinogenesis. In this study we elucidate expression pattern and functional significance of SOCS2 in prostate cancer (PCa). Protein expression analysis employing tissue microarrays from two independent patient cohorts revealed significantly enhanced expression in tumor compared to benign tissue as well as association with Gleason score and disease progression. In vitro and in vivo assays uncovered the involvement of SOCS2 in the regulation of cell growth and apoptosis. Functionally, SOCS2 knockdown inhibited prostate cancer cell proliferation and xenograft growth in a CAM assay. Decreased cell growth after SOCS2 downregulation was associated with cell-cycle arrest and apoptosis. In addition, we prove for the first time that SOCS2 expression is significantly elevated upon androgenic stimulation in androgen receptor-positive cell lines, providing a possible mechanistic explanation for high SOCS2 levels in PCa tissue. Consequently, SOCS2 expression correlated with androgen receptor expression in malignant tissue of patients. Taken together, our study linked increased SOCS2 expression in PCa with a pro-proliferative role in vitro and in vivo.
SOCS2 correlates with malignancy and exerts growth-promoting effects in prostate cancer.
Treatment, Time
View SamplesTo investigate the mechanisms of PCa progression, we performed expression profiling of human prostate cancer and benign tissues.
Integration of tissue metabolomics, transcriptomics and immunohistochemistry reveals ERG- and gleason score-specific metabolomic alterations in prostate cancer.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesMultipotent C3H10T1/2 cells can be induced to differentiate into mature brown adipocytes by 3-days BMP7 pretreatment followed by standard adipogenic induction.
MicroRNA-455 regulates brown adipogenesis via a novel HIF1an-AMPK-PGC1α signaling network.
Cell line
View SamplesThis study is part of a larger effort set to determine the factors requried for the crosstalk between tumor cells and fibroblasts in breast cancer.
Microenvironmental control of breast cancer subtype elicited through paracrine platelet-derived growth factor-CC signaling.
Specimen part, Cell line, Treatment
View Samples