The goals of this study are to compare NGS-derived whole transcriptome profiles (RNA-seq) of H5N1 infected A549 cells overexpressing either negative control mimic or miR-324-5p mimic Overall design: A549 cells were either mock transfected or transfected with either negative control or mir-324-5p mimic. After 12 hours cells were either mock infected (mock transfected cells) or infected with A/duck/India/02CA10/2011 - H5N1 virus (negative control and miR-324-5p overexpressing cells)
MicroRNA hsa-miR-324-5p Suppresses H5N1 Virus Replication by Targeting the Viral PB1 and Host CUEDC2.
Specimen part, Cell line, Subject
View SamplesAnalyses of expression differences in flower bud and leaf of scion and rootstock, in homografts of Arabidopsis
Grafting triggers differential responses between scion and rootstock.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Non-metastatic 2 (NME2)-mediated suppression of lung cancer metastasis involves transcriptional regulation of key cell adhesion factor vinculin.
Specimen part, Cell line
View SamplesCotton is one of the most commercially important Fiber crops in the world and used as a source for natural textile Fiber and cottonseed oil. The fuzzless-lintless ovules of cotton mutants are ideal source for identifying genes involved in Fiber development by comparing with Fiber bearing ovules of wild-type. To decipher molecular mechanisms involved in Fiber cell development, transcriptome analysis has been carried out by comparing G. hirsutum cv. MCU5 (wild-type) with its fuzzless-lintless mutant (MUT). Cotton bolls were collected at Fiber initiation (0 dpa/days post anthesis), elongation (5, 10 and 15 dpa) and secondary cell wall synthesis stage (20 dpa) and gene expression profiles were analyzed in wild-type and MUT using Affymetrix cotton GeneChip Genome array.
Functional genomics of fuzzless-lintless mutant of Gossypium hirsutum L. cv. MCU5 reveal key genes and pathways involved in cotton fibre initiation and elongation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes.
Specimen part, Treatment
View SamplesTranscriptome analysis in cotton during fibre development stages.
Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes.
Treatment
View SamplesTranscriptome analysis in cotton under drought stress.
Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes.
Specimen part, Treatment
View SamplesWe previously identified TLR-independent expression of 4933430F08Rik, encoding Batf2, in T. cruzi-infected bone marrow-derived dendritic cells (BMDCs) (Kayama et al., 2009). To determine the functions of Batf2 in innate immune responses, we performed a comprehensive gene expression analysis in wild-type and Batf2-/- bone marrow-derived macrophages (BMMf). RNA-seq analysis showed that 98 genes are upregulated in Batf2-/- BMMf stimulated with LPS following IFN-? treatment, when compared with that in wild-type cells. Among these genes, we focused on Il23a, encoding IL-23p19, because IL-23 is able to promote expression of Il17a in Th17 cells. Overall design: mRNA of wild-type and Batf2-/- BMMf were subjected to deep sequencing profiling using Illumina HiSeq 2000.
BATF2 inhibits immunopathological Th17 responses by suppressing <i>Il23a</i> expression during <i>Trypanosoma cruzi</i> infection.
Specimen part, Treatment, Subject, Time
View SamplesGlucocorticoids remain the most widely used class of anti-inflammatory and immunosuppressive agents. They act primarily by binding to the glucocorticoid receptor, resulting in direct and indirect effects on gene expression. The current understanding of glucocorticoid effects on transcription in human cells is based mostly on studies of cancer cell lines, immortalized cell lines, or highly mixed populations of primary cells (such as peripheral blood mononuclear cells). To advance the understanding of the transcriptome-wide effects of glucocorticoids on highly pure populations of primary human cells, we performed RNA-seq on nine such cell populations at two time points after in vitro exposure to methylprednisolone or vehicle. Overall design: Nine cell types were studied: four hematopoietic (circulating B cells, CD4+ T cells, monocytes, and neutrophils) and five non-hematopoietic (endothelial cells, fibroblasts, myoblasts, osteoblasts, and preadipocytes). Each cell type was obtained from a separate cohort of 4 unrelated healthy human donors (4 biological replicates per cell type: BR1 - BR4). Cells form each donor were independently cultured and exposed in vitro to glucocorticoid or vehicle. Non-hematopoietic cells were incubated until the early plateau phase of growth, then exposed to methylprednisolone or vehicle. Hematopoietic cells were collected from peripheral blood, purified by magnetic selection (negative selection for B cells, CD4+ T cells and neutrophils; positive selection for monocytes). Purified B cells, CD4+ T cells, and monocytes were incubated overnight, then exposed to methylprednisolone or vehicle. Purified neutrophils were cultured for 4 hours, then exposed to methylprednisolone or vehicle. Ethanol was used as a vehicle for methylprednisolone. Estimated final concentrations were 8500 mcg/L (22.7 mcM) for methylprednisolone and 0.07% (15.57 mM) for ethanol (vehicle). For each cell type, samples were collected at two time points after treatment with methylprednisolone or vehicle: 2 hours and 6 hours. Samples were collected into TRIzol reagent and frozen at -80°C prior to RNA extraction. RNA-seq data for all samples is made available in this GEO Series.
Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses.
Specimen part, Subject, Time
View SamplesIn vivo profiling of hypoxic gene expression in gliomas using the hypoxia marker EF5 and laser-capture microdissection
In vivo profiling of hypoxic gene expression in gliomas using the hypoxia marker EF5 and laser-capture microdissection.
Sex, Age, Specimen part
View Samples