refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 91 results
Sort by

Filters

Technology

Platform

accession-icon GSE57286
Expression data from Arabidopsis thaliana under mild oxidative stress elicited by methyl viologen and stress induced by the limited availability of phosphate
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plants possess highly sensitive mechanisms that monitor environmental stress levels for a dose-dependent fine-tuning of their growth and development. Differences in plant responses to severe and mild abiotic stresses have been recognized. Although many studies have revealed that glutathione can contribute to plant tolerance to various environmental stresses, little is known about the relationship between glutathione and mild abiotic stress, especially the effect of stress-induced altered glutathione levels on the metabolism. Here, we applied a systems biology approach to identify key pathways involved in the gene-to-metabolite networks perturbed by low glutathione content under mild abiotic stress in Arabidopsis thaliana. We used glutathione synthesis mutants (cad2-1 and pad2-1) and plants overexpressing the gene encoding gamma-glutamylcysteine synthetase, the first enzyme of the glutathione biosynthetic pathway. The plants were exposed to two mild stress conditionsoxidative stress elicited by methyl viologen (MV) and stress induced by the limited availability of phosphate. We observed that the mutants and transgenic plants showed similar shoot growth as that of the wild-type plants under mild abiotic stress. We then selected the synthesis mutants and performed multi-platform metabolomics and microarray experiments to evaluate the possible effects on the overall metabolome and the transcriptome. To understand the metabolic responses observed under mild abiotic stress, we conducted gene expression profiling by Affymetrix ATH1 GeneChip. pad2-1 and the wild type Col-0 samples were harvested at 18 day-old after germination under two different stresses, MV treatment and limited phosphorus conditions.

Publication Title

Effects of Combined Low Glutathione with Mild Oxidative and Low Phosphorus Stress on the Metabolism of <i>Arabidopsis thaliana</i>.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE73439
Changes in gene expression and splicing associated with pregnancy, labor and regions of human adipose tissue.
  • organism-icon Homo sapiens
  • sample-icon 203 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This is the expression dataset for two studies: 1) Characterization of visceral and subcutaneous adipose tissue transcriptome and biological pathways in pregnant and non-pregnant women: Evidence for pregnancy-related regional-specific differences in adipose tissue and 2) Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: Implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition.

Publication Title

Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon GSE14663
Involvement of the rice LBD37 (OsLBD37) ortholog of Arabidopsis in nitrogen metabolism- and senescence-related processes
  • organism-icon Oryza sativa, Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14646
Gene expression in aerial parts of rice-Arabidopsis Os-LBD37 FOX plants
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Aerial parts of the rice-Arabidopsis FOX (Full-length cDNA overexpressor) lines K16331 and K19624 harboring the rice FL cDNA of LBD37 (Os-LBD37) were analyzed. LBD37 belongs to the plant- specific LOB- (Lateral Organ Boundary) domain family proteins first characterized in Arabidopsis. Results point towards an involvement of the rice LBD37 ortholog of Arabidopsis in nitrogen metabolism- related processes.

Publication Title

Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14647
Gene expression in leaf blades of the rice Os-LBD37 overexpressor line RK16331-13
  • organism-icon Oryza sativa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The 5th and 6th leaf blades of the rice Os-LBD37 overexpressor line RK16331-13 and the empty vector control line FOX3 were examined. LBD37 belongs to the plant- specific LOB- (Lateral Organ Boundary) domain family proteins first characterized in Arabidopsis. Results point towards an involvement of the rice LBD37 (OsLBD37) ortholog of Arabidopsis in nitrogen metabolism- and senescence- related processes.

Publication Title

Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE110429
ERK3 is essential for establishment of epithelial architecture
  • organism-icon Xenopus laevis
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE110427
ERK3 is essential for establishment of epithelial architecture [ERK3 KD]
  • organism-icon Xenopus laevis
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

Establishment and maintenance of epithelial architecture are essential for embryonic development and adult physiology. Here, we show that ERK3, a poorly characterized atypical MAPK, regulates epithelial architecture in vertebrates. In Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight junction protein distribution, as well as tight junction barrier function, resulting in epidermal breakdown. Moreover, in human breast epithelial cancer cells, inhibition of ERK3 expression induces thickened epithelia with aberrant adherens and tight junctions. Microarray results suggest an involvement of TFAP2A, a transcription factor important for epithelial gene expression, in ERK3-dependent gene expression changes. TFAP2A knockdown phenocopies ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 is required for full activation of TFAP2A-dependent transcription. Our findings thus reveal that ERK3 regulates epithelial architecture, possibly in cooperation with TFAP2A.

Publication Title

The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE110428
ERK3 is essential for establishment of epithelial architecture [ERK3 KD vs. TFAP2A KD]
  • organism-icon Xenopus laevis
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

Establishment and maintenance of epithelial architecture are essential for embryonic development and adult physiology. Here, we show that ERK3, a poorly characterized atypical MAPK, regulates epithelial architecture in vertebrates. In Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight junction protein distribution, as well as tight junction barrier function, resulting in epidermal breakdown. Moreover, in human breast epithelial cancer cells, inhibition of ERK3 expression induces thickened epithelia with aberrant adherens and tight junctions. Microarray results suggest an involvement of TFAP2A, a transcription factor important for epithelial gene expression, in ERK3-dependent gene expression changes. TFAP2A knockdown phenocopies ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 is required for full activation of TFAP2A-dependent transcription. Our findings thus reveal that ERK3 regulates epithelial architecture, possibly in cooperation with TFAP2A.

Publication Title

The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE33767
The protein kinase MLTK Is a key regulator for chondrogenesis.
  • organism-icon Xenopus laevis
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

Sox9 acts together with Sox5 or Sox6 as a master regulator for chondrocyte differentiation; however, how these transcription factors functionally interact and collaborate to regulate chondrogenesis remains unclear. Here we show that the protein kinase MLTK plays an essential role in the onset of chondrogenesis through triggering the induction of Sox6 by Sox9. Knockdown of MLTK in Xenopus embryos results in drastic loss of craniofacial cartilages without defects in neural crest formation. We also find that Sox6 is specifically induced during craniofacial chondrogenesis and this induction is inhibited by MLTK knockdown. Remarkably, Sox6-knockdown embryos display essentially the same phenotype as the MLTK-knockdown embryos; the drastic loss of cartilages and the marked down-regulation of genes involved in chondrogenesis. Microarray analysis reveals a remarkable similarity between Sox6-depleted and MLTK-depleted embryos in their gene expression pattern. Moreover, we find that ectopic expression of MLTK can induce Sox6 expression in a Sox9-dependent manner. These results identify a novel, key regulator for chondrogenesis.

Publication Title

The protein kinase MLTK regulates chondrogenesis by inducing the transcription factor Sox6.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE55687
Expression data of mouse embyonic fibroblasts established from Phgdh KO embryos (KO-MEFs) cultured with or without L-Ser
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

L-Ser deficiency leads to growth arrest, tissue malformation and embryonic lethality in mice. However, the molecular mechanism by which L-Ser deficiency impairs basic cellular function remains largely unexplored.

Publication Title

Microarray data on altered transcriptional program of Phgdh-deficient mouse embryonic fibroblasts caused by ʟ-serine depletion.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact