Plants possess highly sensitive mechanisms that monitor environmental stress levels for a dose-dependent fine-tuning of their growth and development. Differences in plant responses to severe and mild abiotic stresses have been recognized. Although many studies have revealed that glutathione can contribute to plant tolerance to various environmental stresses, little is known about the relationship between glutathione and mild abiotic stress, especially the effect of stress-induced altered glutathione levels on the metabolism. Here, we applied a systems biology approach to identify key pathways involved in the gene-to-metabolite networks perturbed by low glutathione content under mild abiotic stress in Arabidopsis thaliana. We used glutathione synthesis mutants (cad2-1 and pad2-1) and plants overexpressing the gene encoding gamma-glutamylcysteine synthetase, the first enzyme of the glutathione biosynthetic pathway. The plants were exposed to two mild stress conditionsoxidative stress elicited by methyl viologen (MV) and stress induced by the limited availability of phosphate. We observed that the mutants and transgenic plants showed similar shoot growth as that of the wild-type plants under mild abiotic stress. We then selected the synthesis mutants and performed multi-platform metabolomics and microarray experiments to evaluate the possible effects on the overall metabolome and the transcriptome. To understand the metabolic responses observed under mild abiotic stress, we conducted gene expression profiling by Affymetrix ATH1 GeneChip. pad2-1 and the wild type Col-0 samples were harvested at 18 day-old after germination under two different stresses, MV treatment and limited phosphorus conditions.
Effects of Combined Low Glutathione with Mild Oxidative and Low Phosphorus Stress on the Metabolism of <i>Arabidopsis thaliana</i>.
Specimen part, Treatment
View SamplesThis is the expression dataset for two studies: 1) Characterization of visceral and subcutaneous adipose tissue transcriptome and biological pathways in pregnant and non-pregnant women: Evidence for pregnancy-related regional-specific differences in adipose tissue and 2) Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: Implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition.
Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition.
Specimen part, Disease stage, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism.
No sample metadata fields
View SamplesAerial parts of the rice-Arabidopsis FOX (Full-length cDNA overexpressor) lines K16331 and K19624 harboring the rice FL cDNA of LBD37 (Os-LBD37) were analyzed. LBD37 belongs to the plant- specific LOB- (Lateral Organ Boundary) domain family proteins first characterized in Arabidopsis. Results point towards an involvement of the rice LBD37 ortholog of Arabidopsis in nitrogen metabolism- related processes.
Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism.
No sample metadata fields
View SamplesThe 5th and 6th leaf blades of the rice Os-LBD37 overexpressor line RK16331-13 and the empty vector control line FOX3 were examined. LBD37 belongs to the plant- specific LOB- (Lateral Organ Boundary) domain family proteins first characterized in Arabidopsis. Results point towards an involvement of the rice LBD37 (OsLBD37) ortholog of Arabidopsis in nitrogen metabolism- and senescence- related processes.
Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.
Specimen part, Treatment
View SamplesEstablishment and maintenance of epithelial architecture are essential for embryonic development and adult physiology. Here, we show that ERK3, a poorly characterized atypical MAPK, regulates epithelial architecture in vertebrates. In Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight junction protein distribution, as well as tight junction barrier function, resulting in epidermal breakdown. Moreover, in human breast epithelial cancer cells, inhibition of ERK3 expression induces thickened epithelia with aberrant adherens and tight junctions. Microarray results suggest an involvement of TFAP2A, a transcription factor important for epithelial gene expression, in ERK3-dependent gene expression changes. TFAP2A knockdown phenocopies ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 is required for full activation of TFAP2A-dependent transcription. Our findings thus reveal that ERK3 regulates epithelial architecture, possibly in cooperation with TFAP2A.
The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.
Specimen part, Treatment
View SamplesEstablishment and maintenance of epithelial architecture are essential for embryonic development and adult physiology. Here, we show that ERK3, a poorly characterized atypical MAPK, regulates epithelial architecture in vertebrates. In Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight junction protein distribution, as well as tight junction barrier function, resulting in epidermal breakdown. Moreover, in human breast epithelial cancer cells, inhibition of ERK3 expression induces thickened epithelia with aberrant adherens and tight junctions. Microarray results suggest an involvement of TFAP2A, a transcription factor important for epithelial gene expression, in ERK3-dependent gene expression changes. TFAP2A knockdown phenocopies ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 is required for full activation of TFAP2A-dependent transcription. Our findings thus reveal that ERK3 regulates epithelial architecture, possibly in cooperation with TFAP2A.
The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.
Specimen part, Treatment
View SamplesSox9 acts together with Sox5 or Sox6 as a master regulator for chondrocyte differentiation; however, how these transcription factors functionally interact and collaborate to regulate chondrogenesis remains unclear. Here we show that the protein kinase MLTK plays an essential role in the onset of chondrogenesis through triggering the induction of Sox6 by Sox9. Knockdown of MLTK in Xenopus embryos results in drastic loss of craniofacial cartilages without defects in neural crest formation. We also find that Sox6 is specifically induced during craniofacial chondrogenesis and this induction is inhibited by MLTK knockdown. Remarkably, Sox6-knockdown embryos display essentially the same phenotype as the MLTK-knockdown embryos; the drastic loss of cartilages and the marked down-regulation of genes involved in chondrogenesis. Microarray analysis reveals a remarkable similarity between Sox6-depleted and MLTK-depleted embryos in their gene expression pattern. Moreover, we find that ectopic expression of MLTK can induce Sox6 expression in a Sox9-dependent manner. These results identify a novel, key regulator for chondrogenesis.
The protein kinase MLTK regulates chondrogenesis by inducing the transcription factor Sox6.
Specimen part, Treatment
View SamplesL-Ser deficiency leads to growth arrest, tissue malformation and embryonic lethality in mice. However, the molecular mechanism by which L-Ser deficiency impairs basic cellular function remains largely unexplored.
Microarray data on altered transcriptional program of Phgdh-deficient mouse embryonic fibroblasts caused by ʟ-serine depletion.
Specimen part
View Samples