We created a mouse model where conditional expression of physiologic levels of an Mll-AF4 fusion oncogene induces development of acute lymphoblastic (ALL) or acute myeloid leukemias (AML). Immunophenotypic and gene expression analysis of the ALL cells demonstrated bone marrow replacement with B-precursor cells which express a gene expression profile that has significant overlap with profiles in human MLL-rearranged ALL.
H3K79 methylation profiles define murine and human MLL-AF4 leukemias.
Specimen part
View SamplesWe created a mouse model where conditional expression of physiologic levels of an Mll-AF4 fusion oncogene induces development of acute lymphoblastic (ALL) or acute myeloid leukemias (AML). Immunophenotypic and gene expression analysis of the ALL cells demonstrated bone marrow replacement with B-precursor cells which express a gene expression profile that has significant overlap with profiles in human MLL-rearranged ALL.
H3K79 methylation profiles define murine and human MLL-AF4 leukemias.
Specimen part
View SamplesWe created a mouse model where conditional expression of physiologic levels of an Mll-AF4 fusion oncogene induces development of acute lymphoblastic (ALL) or acute myeloid leukemias (AML). Immunophenotypic and gene expression analysis of the ALL cells demonstrated bone marrow replacement with B-precursor cells which express a gene expression profile that has significant overlap with profiles in human MLL-rearranged ALL.
H3K79 methylation profiles define murine and human MLL-AF4 leukemias.
Specimen part
View SamplesHeirarchical development of B-cells involves the induction and supression of large sets of genes that provide the basis for differentiation and, ultimately, antibody production.
Signatures of murine B-cell development implicate Yy1 as a regulator of the germinal center-specific program.
Specimen part
View SamplesThe five DLBCL cell lines were treated with R406 to assess the signature of SYK inhibition. In previous studies, R406 decreased the proliferation and induced apoptosis of these surface Ig+ cell lines. In the previous studies, R406 inhibited the autophosphorylation of SYK 525/526 and SYK-dependent phosphorylation of BCR signaling components such as BLNK.
SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas.
Specimen part, Cell line, Treatment, Time
View SamplesThe two DLBCL cell lines were treated with R406 to assess the signature of SYK inhibition. In previous studies, R406 decreased the proliferation and induced apoptosis of these surface Ig+ cell lines. In the previous studies, R406 inhibited the autophosphorylation of SYK 525/526 and SYK-dependent phosphorylation of BCR signaling components such as BLNK.
SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas.
Specimen part, Cell line, Treatment
View SamplesPurpose: The goals of this study were to identify quantitative gene expression differences between whole tumor and tumor-associated macrophages (TAMs) derived from Lewis lung carcinoma (LLC) tumors grown in wild type and PI3Kinase-gamma-null mice. Methods: mRNA profiles of whole tumor or tumor-associated macrophages (CD11b+Gr1- cells) from wild type (WT) or PI3Kinase-gamma-knockout (p110g-/-) mice were generated by single deep read sequencing, in triplicate or quadruplicate, using Illumina HiSeq 2000. The sequence reads that passed quality filters were aligned to mouse transcriptome using the bowtie2 aligner. Gene-level summaries were normalized and analyzed for differential expression using DESeq. Overall design: mRNA profiles of whole tumor and tumor-associated macrophages from WT and p110g-/- mice were generated by deep sequencing in triplicate or quadruplicate using Illumina HiSeq 2000.
PI3Kγ is a molecular switch that controls immune suppression.
Specimen part, Subject, Time
View SamplesPurpose: The goals of this study were to identify quantitative gene expression differences between macrophages derived from wild type and PI3Kgamma null macrophages Methods: mRNA profiles of MCSF, IL4 and IFNg/LPS stimulated macrophage wild-type (WT) and PI3Kinase gamma knockout (p110g-/-) mice were generated by single read deep sequencing, in triplicate, using Illumina HiSeq2000. The sequence reads that passed quality filters were aligned to mouse transcriptome using the bowtie2 aligner. Gene-level summaries were normalized and analyzed for differential expression using DESeq. qRT–PCR validation was performed using SYBR Green assays. Conclusions: Our study represents the first detailed analysis of the role of p110g in the control of the macrophage immune response, with biological replicates, generated by RNA-seq technology. Overall design: mRNA profiles of wild type (WT) and p110g-/- macrophages were generated by deep sequencing, in triplicate, using Illumina HiSeq2000.
PI3Kγ is a molecular switch that controls immune suppression.
No sample metadata fields
View SamplesNon-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 is assigned as a key player of neuronal differentiation via its complex, but little understood, regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human stem cells. Upon neuronal induction, miR-124-depleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. By RNA-induced-silencing-complex precipitation, we found that other miRNA species were upregulated in miR-124 depleted neurons. Furthermore, we identified 98 miR-124 targets of which some directly led to decreased viability. We performed advanced transcription-factor-network analysis and revealed indirect miR-124 effects on apoptosis and neuronal subtype differentiation. Our data emphasizes the need for combined experimental- and systems-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain. Overall design: RNA profile for timecourse of neuronal Neurogenin-1 and 2-triggered differentiation from human iPSCs (wildtype and ?miR-124).
Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis.
Subject
View SamplesNon-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 is assigned as a key player of neuronal differentiation via its complex, but little understood, regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human stem cells. Upon neuronal induction, miR-124-depleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. By RNA-induced-silencing-complex precipitation, we found that other miRNA species were upregulated in miR-124 depleted neurons. Furthermore, we identified 98 miR-124 targets of which some directly led to decreased viability. We performed advanced transcription-factor-network analysis and revealed indirect miR-124 effects on apoptosis and neuronal subtype differentiation. Our data emphasizes the need for combined experimental- and systems-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain. Overall design: RNA interacting protein immunoprecipitation with AGO2 for miR-124 target enrichment from neuronal Neurogenin-1 and 2-triggered differentiation from human iPSCs (wildtype and ?miR-124) and subsequent sequencing.
Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis.
Subject
View Samples