refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 138 results
Sort by

Filters

Technology

Platform

accession-icon SRP119272
Long-term expansion and differentiation of adult murine epidermal stem cells in three-dimensional organoid cultures
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Mammalian epidermal stem cells maintain homeostasis of skin epidermis and contribute to its regeneration throughout adult life. While two-dimensional mouse epidermal stem cell cultures have been established decades ago, a long-term, feeder cell- and serum-free culture system recapitulating murine epidermal architecture has not been available. Here we describe an epidermal organoid culture system that allows long-term, genetically stable expansion of adult epidermal stem cells. Our epidermal expansion media combines atypically high calcium concentrations, activation of cyclic AMP, FGF and R-spondin signaling with inhibition of BMP signaling. Organoids are established robustly from adult mouse skin and expand over at least 6 months, while maintaining the basal-apical organization of the mouse interfollicular epidermis. The system represents a powerful tool to study epidermal homeostasis and disease in vitro. Overall design: We establish an organoid culture system for long-term expansion of mouse epidermal stem cells. Using histological methods as well as low-coverage multiplexed RNA sequencing, we show that cultured organoids resembled interfollicular epidermis. We analyzed a total of 23 samples, including 6 controls that are isolated from the skin of mice. None-passaged as well as cultured organoids were compared with replicates. Differences growth factors and small molecules that allow expansion of organoids were compared with replicates.

Publication Title

Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE94341
Inhibition of the kinesin spindle protein enhances the activity of pomalidomide and dexamethasone in multiple myeloma
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE94336
Inhibition of the kinesin spindle protein enhances the activity of pomalidomide and dexamethasone in multiple myeloma [In Vivo]
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Kinesin spindle protein (KSP) inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (Arry-520), a KSP inhibitor, has demonstrated activity in heavily pretreated multiple myeloma (MM) patients. The aim of this work was to investigate the activity of filanesib in combination with an IMiDs plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. Results: Filanesib showed in vitro and in vivo synergy with all IMiDs plus dexamethasone treatment, particularly with the pomalidomide combination (PDF). Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and it was shown to be mediated by impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, PDF increased the activation of the proapoptotic protein Bax, which has been previously associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Conclusions: Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone and es-tablished the basis for a recently activated trial being conducted by the Spanish MM group investigating this combination in relapsed MM patients.

Publication Title

The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE94334
Inhibition of the kinesin spindle protein enhances the activity of pomalidomide and dexamethasone in multiple myeloma [In Vitro]
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Kinesin spindle protein (KSP) inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (Arry-520), a KSP inhibitor, has demonstrated activity in heavily pretreated multiple myeloma (MM) patients. The aim of this work was to investigate the activity of filanesib in combination with an IMiDs plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. Results: Filanesib showed in vitro and in vivo synergy with all IMiDs plus dexamethasone treatment, particularly with the pomalidomide combination (PDF). Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and it was shown to be mediated by impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, PDF increased the activation of the proapoptotic protein Bax, which has been previously associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Conclusions: Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone and es-tablished the basis for a recently activated trial being conducted by the Spanish MM group investigating this combination in relapsed MM patients.

Publication Title

The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP049774
Reg4+ Deep Crypt Secretory cells function as epithelial niche for Lgr5+ stem cells in colon
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Lgr5+ stem cells reside at crypt bottoms of the small and large intestine. Small intestinal Paneth cells supply Wnt3, EGF and Notch signals to neighboring Lgr5+ stem cells. While the colon lacks Paneth cells, Deep Crypt Secretory (DCS) cells are intermingled with Lgr5+ stem cells at crypt bottoms. Here, we report Reg4 as a marker of DCS cells. To investigate a niche function, we eliminated DCS cells using the diphtheria-toxin receptor gene knocked into the murine Reg4 locus. Ablation of DCS cells results in loss of stem cells from colonic crypts and disrupts gut homeostasis and colon mini-gut formation. In agreement, sorted Reg4+ DCS cells promote organoid formation of single Lgr5+ colon stem cells. Stem cells are forced to generate DCS cells in vitro by combined Notch inhibition and Wnt activation. We conclude that Reg4+ DCS cells serve as Paneth cell equivalents in the colon crypt niche. Overall design: To define a global gene expression signature of DCS cells, we performed RNA-sequencing (RNA-seq) of sorted Reg4-dsRed+ and Lgr5-GFP+ cells from colonic epithelium. Sorting and RNA-seq library preparation was performed twice, to obtain a biological replicate.

Publication Title

Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51044
Gamma-secretase inhibitor plus fludarabine in CLL
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Combination of GSI with fludarabine has a synergistic antileukemic effect in primary NOTCH1-mutated CLL cells

Publication Title

The γ-secretase inhibitor PF-03084014 combined with fludarabine antagonizes migration, invasion and angiogenesis in NOTCH1-mutated CLL cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP131004
RNA-Seq in human T-cell lymphoblastic lymphoma samples and control thymuses
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Precursor T-cell lymphoblastic neoplasms are aggressive haematological neoplasm that most often manifest with extensive marrow and blood affectation (T-cell acute lymphoblastic leukaemia or T-ALL) or less commonly as a thymic mass with limited bone marrow infiltration (T-cell lymphoblastic lymphoma or T-LBL). Here we show data from RNA-Seq in a sample series of T-LBL from Spanish patients.The goal was to determine the levels of expression of coding genes and microRNAs, and to identify all genetic variants including SNVs, indels, and fusion transcripts. Overall design: Expression data were determined by comparson of each tumour sample with two control thymuses (404 and 405). Genetic variants were determined by comparison of tumour sequences with canonical ENSEMBL normal-references of each gene.

Publication Title

RNA-Seq reveals the existence of a CDKN1C-E2F1-TP53 axis that is altered in human T-cell lymphoblastic lymphomas.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE44272
The Long-HER Study
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Trastuzumab improves survival outcomes in patients with HER2+ metastatic breast cancer. Some of these patients may become long-term survivors. The Long-Her study was designed to identify clinical and molecular markers that could differentiate long-term survivors from patients having early progression to trastuzumab.

Publication Title

The Long-HER study: clinical and molecular analysis of patients with HER2+ advanced breast cancer who become long-term survivors with trastuzumab-based therapy.

Sample Metadata Fields

Age, Disease

View Samples
accession-icon GSE146093
Epigenomic and transcriptomic analysis of Systemic Sclerosis CD4+ T cells
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman), Infinium MethylationEPIC

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE146088
Epigenomic and transcriptomic analysis of Systemic Sclerosis CD4+ T cells [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

Epigenomic and transcriptomic analysis of Systemic Sclerosis CD4+ T cells reveals long range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci range dysregulation of key inflammatory pathways mediated by disease-associated

Publication Title

Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.

Sample Metadata Fields

Sex, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact