Precursor T-cell lymphoblastic neoplasms are aggressive haematological neoplasm that most often manifest with extensive marrow and blood affectation (T-cell acute lymphoblastic leukaemia or T-ALL) or less commonly as a thymic mass with limited bone marrow infiltration (T-cell lymphoblastic lymphoma or T-LBL). Here we show data from RNA-Seq in a sample series of T-LBL from Spanish patients.The goal was to determine the levels of expression of coding genes and microRNAs, and to identify all genetic variants including SNVs, indels, and fusion transcripts. Overall design: Expression data were determined by comparson of each tumour sample with two control thymuses (404 and 405). Genetic variants were determined by comparison of tumour sequences with canonical ENSEMBL normal-references of each gene.
RNA-Seq reveals the existence of a CDKN1C-E2F1-TP53 axis that is altered in human T-cell lymphoblastic lymphomas.
Specimen part, Subject
View SamplesCombination of GSI with fludarabine has a synergistic antileukemic effect in primary NOTCH1-mutated CLL cells
The γ-secretase inhibitor PF-03084014 combined with fludarabine antagonizes migration, invasion and angiogenesis in NOTCH1-mutated CLL cells.
Specimen part
View SamplesTrastuzumab improves survival outcomes in patients with HER2+ metastatic breast cancer. Some of these patients may become long-term survivors. The Long-Her study was designed to identify clinical and molecular markers that could differentiate long-term survivors from patients having early progression to trastuzumab.
The Long-HER study: clinical and molecular analysis of patients with HER2+ advanced breast cancer who become long-term survivors with trastuzumab-based therapy.
Age, Disease
View SamplesHutchinson-Gilford Progeria Syndrome (HGPS) is caused by a point mutation in the LMNA gene that activates a cryptic donor splice site and yields a truncated form of prelamin A called progerin. Small amounts of progerin are also produced during normal aging. Studies with mouse models of HGPS have allowed the recent development of the first therapeutic approaches for this disease. However, none of these earlier works have addressed the aberrant and pathogenic LMNA splicing observed in HGPS patients because of the lack of an appropriate mouse model. We report herein a genetically modified mouse strain that carries the HGPS mutation. These mice accumulate progerin, present histological and transcriptional alterations characteristic of progeroid models, and phenocopy the main clinical manifestations of human HGPS, including shortened life span and bone and cardiovascular aberrations. By using this animal model, we have developed an antisense morpholinobased therapy that prevents the pathogenic Lmna splicing, dramatically reducing the accumulation of progerin and its associated nuclear defects. Treatment of mutant mice with these morpholinos led to a marked amelioration of their progeroid phenotype and substantially extended their life span, supporting the effectiveness of antisense oligonucleotidebased therapies for treating human diseases of accelerated aging.
Splicing-directed therapy in a new mouse model of human accelerated aging.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae.
No sample metadata fields
View SamplesThe role of ERbeta2 in zebrafish larvae was investigated by injection of a Morpholino against ERbeta2. After 72hpf, the morphants showed a strong disruption in their sensory systems. ERbeta2 has been shown to be needed for the normal functioning of the sensory system organs, the neuromasts. The mechanisms involved in the neuromast disruption in ERbeta2 morphants was identified by microarrays gene screening. After comparison of two screening with low and hign concentration of Morpholinos, genes that were present in the two microarrays screening were selected. The genes were then chosen by relevance for the mechanisms involved in the role of ERbeta2 in neuromast development. The ngn1 transcription factor, Notch3 and Notch1a showed to be up-regulated, also confirmed by in situ hybridization. The Notch signaling is known to be involved in cell fate in developing neuromasts. The overall conclusion is that ERbeta2 by interacting with the notch signaling pathways is critical for normal development of the neuromast of the lateral line in zebrafish.
Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae.
No sample metadata fields
View SamplesThe role of ERbeta2 in zebrafish larvae was investigated by injection of a Morpholino against ERbeta2. After 72hpf, the morphants showed a strong disruption in their sensory systems. ERbeta2 has been shown to be needed for the normal functioning of the sensory system organs, the neuromasts. The mechanisms involved in the neuromast disruption in ERbeta2 morphants was identified by microarrays gene screening. After comparison of two screening with low and high concentration of Morpholinos, genes that were present in the two microarrays screening were selected. The genes were then chosen by relevance for the mechanisms involved in the role of ERbeta2 in neuromast development. The ngn1 transcription factor, Notch3 and Notch1a showed to be up-regulated, also confirmed by in situ hybridization. The Notch signaling is known to be involved in cell fate in developing neuromasts. The overall conclusion is that ERbeta2 by interacting with the notch signaling pathways is critical for normal development of the neuromast of the lateral line in zebrafish.
Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae.
No sample metadata fields
View SamplesBackground: Transcriptome variability is due to genetic and environmental causes, much like any other complex phenotype. Ascertaining the transcriptome differences between individuals is an important step to understand how selection and genetic drift may affect gene expression. To that end, extant divergent livestock breeds offer an ideal genetic material.
Impact of breed and sex on porcine endocrine transcriptome: a bayesian biometrical analysis.
Sex, Specimen part
View SamplesAlthough a number of animal model studies have addressed changes in gene expression in the parenchyma and their relationship to emphysema, much less is known about the pathogenesis of cigarette smoke-induced small airway remodeling. In this study, we exposed rat tracheal explants to whole smoke for 15 minutes, and then cultured the explants in air. The airway transcriptome was evaluated using RAE 230_2 GeneChips. By 2 hours after starting smoke exposure, expression levels of 502 genes were changed up or down by more than 1.5 times (p values <0.01 or less), and by 24 hours, 1870 genes were significantly changed up or down. These included genes involved in anti-oxidant protection, epithelial defense and remodeling, inflammatory mediators and transcription factors, and a number of unexpected genes including the MMP-12 inducer, tachykinin-1 (substance P). Pre-treatment of the explants with 1 x 10-7 M dexamethasone reduced the number of significantly changed genes by approximately 47% at 2 hr and 68% at 24 hours, and in almost all instances, reduced the magnitude of the smoke-induced changes. We conclude that even a very brief exposure to cigarette smoke can lead to rapid changes in the expression of a large number of genes in rat tracheal explants, and that these effects are directly mediated by smoke, without a need for exogenous inflammatory cells. Steroids, contrary to the usual belief, are able to ameliorate many of these changes, at least in this very acute model.
Modification of the rat airway explant transcriptome by cigarette smoke.
Specimen part, Treatment
View SamplesPlant cells contain different O-acetylserine(thiol)lyase (OASTL) enzymes involved in Cys biosynthesis and located in different subcellular compartments. These enzymes are made up of a complex variety of isoforms resulting in different subcellular Cys pools. To unravel the contribution of cytosolic Cys to plant metabolism, we characterized the knockout oas-a1.1 and osa-a1.2 mutants, deficient in the most abundant cytosolic OASTL isoform in Arabidposis thaliana. Total intracellular Cys and glutathione concentrations were reduced, and the glutathione redox state was shifted in favour of its oxidized form. Interestingly, the capability of the mutants to chelate heavy metals did not differ from that of the wild type, but the mutants have an enhanced sensitivity to Cd. With the aim of establishing the metabolic network most influenced by the cytosolic Cys pool, we used the ATH1 GeneChip for evaluation of differentially expressed genes in the oas-a1.1 mutant grown under non-stress conditions. The transcriptomic footprints of mutant plants had predicted functions associated with various physiological responses that are dependent on reactive oxygen species and suggested that the mutant was oxidatively stressed. To further elucidate the specific function(s) of the OAS-A1 isoform in the adaptation response to cadmium we extended the trasncriptome experiment to the wild type and oas-a1.1 mutant plants exposed to Cd. The comparison of transcriptomic profiles showed a higher proportion of genes with altered expression in the mutant than in the wild type, highlighting up-regulated genes identified as of the general oxidative stress response rather than metal-responsive genes.
Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis.
Specimen part
View Samples