DLK1/FA-1 (delta-like 1/fetal antigen-1) is a transmembrane protein belonging to Notch/Delta family that acts as a membrane-associated or a soluble protein to regulate regeneration of a number of adult tissues. Here, we examined the role of DLK1/FA-1 in bone biology using osteoblast-specific-Dlk1 over-expressing mice (Col1-Dlk1). Col1-Dlk1 mice displayed growth retardation and significantly reduced total body weight and bone mineral density (BMD). CT-scanning revealed a reduced trabecular and cortical bone volume fraction. Tissue-level histomorphometric analysis demonstrated decreased bone formation rate and enhanced bone resorption in Col1-Dlk1 as compared to WT. At a cellular level, DLK1 markedly reduced the total number of bone marrow (BM)-derived CFU-F, as well as their osteogenic capacity. In a number of in vitro culture systems, DLK1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of pro-inflammatory bone resorbing cytokines (e.g, Il7, Tnfa and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of DLK1 in bone marrow by activated T-cells. However, Dlk1-/- mice were protected from ovx-induced bone loss. Thus, we identified DLK1 as a novel regulator of bone mass that function to inhibit bone formation and to stimulate bone resorption. Increasing DLK1 production by T-cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss.
DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice.
Specimen part
View SamplesWe report an applicaton of small RNA sequencing using high throughput next generation sequencing to identify the small RNA content of cell lines. By sequencing over 30 million reads we could identify a new class of small RNAs previousy observed with tiling arrays and mapping to promoter regions of coding genes. We also identified a large number of small RNAs corresponding to internal exons of coding genes. By using different enzymatic treatments and immunoprecipitation experiments, we have determined that both the promoter associated small RNAs as well as ones within the body of the genes bear 5'' cap structures. Overall design: Examination of the expression of small RNAs (<200nt).
Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs.
No sample metadata fields
View SamplesAnalysis of gene expression levels from oral tumor and normal tissue. The purpose of this experiment was to compare profiles of gene expression between tumor and negative margin tissue from matched patient samples.
Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations.
Specimen part
View SamplesMalformations of cortical development are the underlying eitiology of many cases of Mental Retardation and Epilepsy. Subtle, below the resolution of current MRI, cortical dysplasias are probably involved in many cases of MR, Epilepsy and Autism for which no diagnosis can currently be made. Therefore, understanding the process of cortical development will be vital in diagnosing and eventual treatment of many patients with these conditions. More specifically, the cortex forms from two major populations of neuroblasts which reach their final destination in the cortex by differerent mechanisms. One is radial migration from ventricular neuroblasts to the cortical plate. These cells are excititory projection neurons and glia. The second pathway is from the ventral ganglionic eminences and tangential migration of the interneuronal population of primarily inhibitory neurons. Much less is known about the control of the latter process, and many of these currently undiagnosed subtle malformations may stem from abnormalities of this tangential migration. This project focuses on the understanding the control of the tangentially migrating inhibitory interneurons.
Identification of Arx transcriptional targets in the developing basal forebrain.
No sample metadata fields
View SamplesArx is a paired-box homeodomain transcription factor and the vertebrate ortholog to the Drosophila aristaless (al) gene. Mutations in Arx are associated with a variety of human diseases, including X-linked infantile spasm syndrome (OMIM: 308350), X-linked myoclonic epilepsy with mental retardation and spasticity (OMIM: 300432), X-linked lissencephaly with ambiguous genitalia (OMIM: 300215), X-linked mental retardation 54 (OMIM: 300419), and agenesis of the corpus callosum with abnormal genitalia (OMIM: 300004). Arx-deficient mice exhibit a complex, pleiotrophic phenotype, including decreased proliferation of neuroepithelial cells of the cortex, dysgenesis of the thalamus and olfactory bulbs, and abnormal nonradial migration of GABAergic interneurons. It has been suggested that deficits in interneuron specification, migration, or function lead to loss of inhibitory neurotransmission, which then fails to control excitatory activity and leads to epilepsy or spasticities. Given that Arx mutations are associated with developmental disorders in which epilepsy and spasticity predominate and that Arx-deficient mice exhibit deficits in interneuron migration, understanding the function of Arx in interneuron migration will prove crucial to understanding the pathology underlying interneuronopathies. Yet, downstream transcriptional targets of Arx, to date, remain unidentified.
Identification of Arx transcriptional targets in the developing basal forebrain.
No sample metadata fields
View SamplesThe goal is the characterization of the off-target activity of BKM120 observed in A2058 human melanoma cell line at IC90 concentration (3.606 M) but not at lower concentrations. Controls are BEZ235, GDC0941, showing no off-target activity.
Characterization of the mechanism of action of the pan class I PI3K inhibitor NVP-BKM120 across a broad range of concentrations.
Cell line
View SamplesInterferon-alpha Kinoid (IFN-K) is a therapeutic vaccine composed of IFN-alpha2b coupled to a carrier protein. In a phase I/II placebo-controlled trial, we observed that IFN-K significantly decreases the IFN gene signature in whole blood RNA samples from SLE patients (see GSE39088). Here, we analyzed extended follow-up data from IFN-K-treated patients, in terms of persistence of neutralizing anti-IFN Abs, gene expression profiling and safety.
Interferon α kinoid induces neutralizing anti-interferon α antibodies that decrease the expression of interferon-induced and B cell activation associated transcripts: analysis of extended follow-up data from the interferon α kinoid phase I/II study.
Sex, Specimen part, Disease, Disease stage, Subject, Time
View SamplesPatients with systemic lupus erythematosus are characterized by the spontaneous over-expression of interferon(IFN)-induced genes in peripheral blood RNA samples. In the present study, we wanted to study the evolution of the IFN gene signature in the peripheral blood of patients with lupus nephritis, before and after initiation of immunosuppressive therapy.
Interferon α kinoid induces neutralizing anti-interferon α antibodies that decrease the expression of interferon-induced and B cell activation associated transcripts: analysis of extended follow-up data from the interferon α kinoid phase I/II study.
Sex, Age, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesPrimary mielofibrosis (PMF) is a rare chronic myeloproliferative disorder characterized by the accumulation of abnormal megakaryocytes (Mks) in the bone marrow (BM), variable degrees of BM fibrosis, osteosclerosis and angiogenesis, immature myeloid and erythroid cells, and tear-drop erythrocytes in the peripheral blood (PB), and extramedullary hematopoiesis. The identification of the JAK2V617F mutation represented a seminal discovery in the field of Philadelphia-chromosomenegative chronic myeloproliferative neoplasms (MPNs), providing clues to the pathogenesis, prompting a revision of the diagnostic criteria, and culminating in the development of clinical trials with JAK2 (and JAK1) inhibitors. The JAK2V617F mutation occurs in almost all patients with polycythemia vera (PV) and in 50%-70% of those with essential thrombocythemia (ET) and primary myelofibrosis (PMF). Soon after the identification of the JAK2V617F mutation, mutations in JAK2 exon 12 were described in rare patients with JAK2V617F-negative PV and mutations in MPL were reported in 5%-10% of ET or PMF subjects. The complexity of the molecular pathogenesis of MPNs is reinforced by discovery of additional mutations in TET2, ASXL1, CBL, IDH1/IDH2, EZH2 and IKZF1. These mutations are detected in a minority of patients at different phases of the disorder, including leukemic transformation, and are variably associated each other and with JAK2 or MPL mutations.
Mutations and prognosis in primary myelofibrosis.
Specimen part, Disease
View SamplesPancreatic islet endocrine cell and endothelial cell (EC) interactions mediated by vascular endothelial growth factor-A (VEGF-A) signaling are important for islet endocrine cell differentiation and the formation of highly vascularized islets. To dissect how VEGF-A signaling modulates intra-islet vasculature and innervation, islet microenvironment, and ß cell mass, we transiently increased VEGF-A production by ß cells. VEGF-A induction dramatically increased the number of intra-islet ECs but led to ß cell loss. After withdrawal of the VEGF-A stimulus, ß cell mass, function, and islet structure normalized as a result of a robust, but transient, burst in proliferation of pre-existing ß cells. Bone marrow-derived macrophages (MFs) recruited to the site of ß cell injury were crucial for the ß cell proliferation, which was independent of pancreatic location and circulating factors such as glucose. Identification of the signals responsible for the proliferation of adult, terminally differentiated ß cells will improve strategies aimed at ß cell regeneration and expansion. Overall design: Examination of RNA profiles from isolated whole islets from RIP-rtTA; TetO-VEGF-A mice with no doxycycline (Dox) treatment (3 samples) and after 1 week of Dox (3 sample); and islet-derived macrophages (3 samples) and endothelial cells (3 samples) isolated from dispersed purified islets from RIP-rtTA; TetO-VEGF-A mice after 1 week Dox treatment by fluorescence-activated cell sorting using antibodies against CD11b and CD31, respectively.
Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding.
Specimen part, Cell line, Treatment, Subject
View Samples