refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 99 results
Sort by

Filters

Technology

Platform

accession-icon GSE29589
Comparison of root transcriptomes in Arabidopsis thaliana plants supplied with different forms of inorganic nitrogen
  • organism-icon Arabidopsis thaliana
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plants aquire nitrogen from the soil, most commonly in the form of either nitrate or ammonium. Unlike ammonium, nitrate must be reduced (with NADH and ferredoxin as electron donors) prior to assimilation. Thus, nitrate nutrition imposes a substantially greater energetic cost than ammonium nutrition. Our goal was to compare the transcriptomes of nitrate-supplied and ammonium-supplied plants, with a particular interest in characterizing the differences in redox metabolism elicited by different forms of inorganic nitrogen.

Publication Title

Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19729
Interactions between developing B-lymphocytes and stromal cells reveal complex interactions and two-way communication
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Full title: Genomics based analysis of interactions between developing B-lymphocytes and stromal cells reveal complex interactions and two-way communication

Publication Title

Genomics based analysis of interactions between developing B-lymphocytes and stromal cells reveal complex interactions and two-way communication.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44856
Expression data from Human Umbilical Vein Endothelial Cells (HUVECs) exposed to WT and V30M transthyretin (TTR)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

The biological effects of TTR proteins in the vasculature remain unknown.

Publication Title

Transthyretin proteins regulate angiogenesis by conferring different molecular identities to endothelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45440
Transcription factormediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Cell-based therapies for myelin disorders, such as multiple sclerosis and leukodystrophies, require technologies to generate functional oligodendrocyte progenitor cells. Here we describe direct conversion of mouse embryonic and lung fibroblasts to induced oligodendrocyte progenitor cells (iOPCs) using sets of either eight or three defined transcription factors. iOPCs exhibit a bipolar morphologyical and global gene expression profile molecular features consistent with bona fide OPCs. They can be expanded in vitro for at least five passages while retaining the ability to differentiate into induced multiprocessed oligodendrocytes. When transplanted to hypomyelinated mice, iOPCs are capable of ensheathing host axons and generating compact myelinmyelinating axons both in vitro and in vivo. Lineage conversion of somatic cells to expandable iOPCs provides a strategy to study the molecular control of oligodendrocyte lineage identity and may facilitate neurological disease modeling and autologous remyelinating therapies.

Publication Title

Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP103116
Rapid functional genetics of the oligodendrocyte lineage using pluripotent stem cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Oligodendrocyte dysfunction underlies many neurological disorders but rapid assessment of mutation-specific effects in these cells has been impractical. To enable functional genetics in oligodendrocytes, here we report a highly efficient method for generating oligodendrocytes and their progenitors from mouse embryonic and induced pluripotent stem cells, independent of mouse strain or mutational status. We demonstrate that this approach, when combined with genome engineering, provides a powerful platform for the expeditious study of genotype-phenotype relationships in oligodendrocytes. Overall design: Cells were lysed directly in 1 ml of TRIzol (Thermo Fisher) and stored at -80°C. Once all samples were collected, samples were thawed on ice and RNA was separated with chloroform using Phase Lock Gel tubes (5prime). RNA was isolated using the miRNeasy Mini Kit (Qiagen) according to the manufacture's protocol. One microgram of each sample was then subject to ribosome depletion, fragmented, and library prepared using the TruSeq Stranded Total RNA Kit with Ribo Zero Gold (Illumina) according to the manufacturer's protocol and indexed using TruSeq adapters. One hundred base pair paired-end reads were generated for each sample on the Illumina HiSeq 2500 (Case Western Reserve University Sequencing Core; Cleveland, OH). Samples include mESC derived oligodendrocyte progenitor cells (OPCs) from four different wildtype mouse strains at 0 hr, 24, hr, 48 hr, and 72 hr after treatment with thyroid hormone T3 (n = 4 biological replicates per time point). Two additional samples include mutant OPCs (shiverer and MYRF knockout ''delMYRF'') at 72 hr time point.

Publication Title

Rapid functional genetics of the oligodendrocyte lineage using pluripotent stem cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP134127
Invasive non-typhoidal Salmonella dysregulates the repertoire of dendritic cell responses to intracellular and extracellular stimuli [scRNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 384 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Non-typhoidal Salmonella (NTS) are among of the most important food-borne pathogens. Recently, a highly invasive multi-drug resistant S. Typhimurium of a distinct multilocus sequence type (MLST), ST313, has emerged across sub-Saharan Africa as a major cause of lethal bacteraemia in children and immunosuppressed adults. Encounters between dendritic cells (DCs) and invading bacteria determine the course of infection but whether or how ST313 might usurp DC mediated defence has not been reported. Here we utilised fluorescently labelled invasive and non-invasive strains of Salmonella combined with single-cell RNA sequencing to study the transcriptomes of individual infected and bystander DCs. The transcriptomes displayed a repertoire of cell instrinsic and extrinsic innate response states that differed between invasive and non-invasive strains. Gene expression heterogeneity was increased in DCs challenged with invasive Salmonella. DCs exposed but not harbouring invasive Salmonella exhibited a hyper-activated profile that likely facilitates trafficking of infected cells and dissemination of internalised intact bacteria. In contrast, invasive Salmonella containing DCs demonstrate reprogramming of trafficking genes required to avoid autophagic destruction. Furthermore, these cells displayed differential expression of tolerogenic IL10 and MARCH1 enabling CD83 mediated adaptive immune evasion. Altogether our data illustrate pathogen cell-to cell variability directed by a Salmonella invasive strain highlighting potential mechanisms of host adaption with implications for dissemination in vivo. Overall design: Single-cell RNA sequencing (SMARTSeq2) of 373 human monocyte derived dendritic cells infected with S. Typhimurium strain LT2 or D23580 or left uninfected

Publication Title

Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE2192
Differentiation of NIH-3T3 cells to adipocytes by PPARg or EBF1 over-expression.
  • organism-icon Mus musculus
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

NIH-3T3 cells transduced with either EBF1-, PPARg2- or empty vector were stimulated with hormones to initiate adipocyte differentiation. RNA extraction was done using TriZol at d0, d2, d4 and d10 after stimulation. Samples were handled according to standard affymetrix protocols.

Publication Title

Gene expression analysis suggests that EBF-1 and PPARgamma2 induce adipogenesis of NIH-3T3 cells with similar efficiency and kinetics.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP134128
Invasive non-typhoidal Salmonella dysregulates the repertoire of dendritic cell responses to intracellular and extracellular stimuli [bulk RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Non-typhoidal Salmonella (NTS) are among of the most important food-borne pathogens. Recently, a highly invasive multi-drug resistant S. Typhimurium of a distinct multilocus sequence type (MLST), ST313, has emerged across sub-Saharan Africa as a major cause of lethal bacteraemia in children and immunosuppressed adults. Encounters between dendritic cells (DCs) and invading bacteria determine the course of infection but whether or how ST313 might usurp DC mediated defence has not been reported. Here we utilised fluorescently labelled invasive and non-invasive strains of Salmonella combined with single-cell RNA sequencing to study the transcriptomes of individual infected and bystander DCs. The transcriptomes displayed a repertoire of cell instrinsic and extrinsic innate response states that differed between invasive and non-invasive strains. Gene expression heterogeneity was increased in DCs challenged with invasive Salmonella. DCs exposed but not harbouring invasive Salmonella exhibited a hyper-activated profile that likely facilitates trafficking of infected cells and dissemination of internalised intact bacteria. In contrast, invasive Salmonella containing DCs demonstrate reprogramming of trafficking genes required to avoid autophagic destruction. Furthermore, these cells displayed differential expression of tolerogenic IL10 and MARCH1 enabling CD83 mediated adaptive immune evasion. Altogether our data illustrate pathogen cell-to cell variability directed by a Salmonella invasive strain highlighting potential mechanisms of host adaption with implications for dissemination in vivo. Overall design: RNA-seq of mini-bulks (5000 cells) of human monocyte derived dendritic cells infected with S. Typhimurium strain LT2 or D23580 or left uninfected

Publication Title

Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE32325
Expression and ChIP-seq analysis LPS stimulated THP-1 cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Combined chromatin and expression analysis reveals specific regulatory mechanisms within cytokine genes in the macrophage early immune response.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE32141
Expression analysis LPS stimulated THP-1 cells in four paired samples
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS). To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches - gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq) analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac) and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII), which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF), was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines), was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/-LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40%) was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at the chromatin level for specific genes and this study highlights the level of fine-tuning that occurs in the immune response.

Publication Title

Combined chromatin and expression analysis reveals specific regulatory mechanisms within cytokine genes in the macrophage early immune response.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact