This SuperSeries is composed of the SubSeries listed below.
The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots.
Age, Specimen part
View SamplesTranscriptional profile of whole roots of wild-type and pye-1 mutants exposed to 24 hours -Fe were generated
The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots.
Age, Specimen part
View SamplesPericycle specific transcriptional profiles were generated by FACS (Fluorescence Activated Cell Sorting) of roots that express a pericycle-specific GFP-reporter. FACS cell populations were isolated from roots grown under standard conditions or roots that had been transferred to -Fe media for 24 hours.
The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots.
Age, Specimen part
View SamplesBackground:
Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis.
Specimen part
View SamplesABSTRACT: Background: Though central to our understanding of how roots perform their vital function of scavenging water and solutes from the soil, no direct genetic evidence currently exists to support the foundational model that suberin acts to form a chemical barrier limiting the extracellular, or apoplastic, transport of water and solutes in plant roots.
Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis.
Specimen part
View SamplesABSTRACT
Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1).
No sample metadata fields
View SamplesTo determine if aberrant activation of endothelin-1 (Et1) could lead to the dysregulation of many downstream genes, we exposed fibroblasts to exogenous ET1 peptide and assayed for transcriptional changes by microarray. Mouse dermal fibroblasts were treated with exogenous Et1 peptide for 24 hours. ET1 treatment resulted in significant expression changes primarily downregulation of a number of genes. In particular, Tgf2 and Tgf3 were among the downregulated genes, which in turn alter the expression status of their many target genes. These data suggest that the stable silencing of Et1 is important for the phenotypic stability of dermal fibroblasts, and perhaps many other cell types as well.
Localized methylation in the key regulator gene endothelin-1 is associated with cell type-specific transcriptional silencing.
No sample metadata fields
View SamplesTranscriptional fingerprint of hypomyelination in Zfp191null and Shiverer (Mbpshi) mice
Transcriptional Fingerprint of Hypomyelination in Zfp191null and Shiverer (Mbpshi) Mice.
Sex, Specimen part, Cell line
View SamplesBackground: Development of target specific therapeutics greatly benefits from simultaneous identification of biomarkers to determine aspects of bioactivity, drug safety and efficacy or even treatment outcome. This is particularly important when targeting pleiotropic factors such as the TGFbeta system. TGFbeta has become a prime target for cancer therapeutics since inhibition of TGFbeta signaling simultaneously attacks the tumor and its microenvironment. Methods: Here we introduce blood transcriptomics followed by a defined set of validation assays as a promising approach to identify novel biomarkers for monitoring TGFbeta therapy. Findings: Our initial genome-wide analysis of transcription in peripheral blood revealed 12 candidate genes specifically regulated in peripheral blood by the TGFbeta receptor I kinase inhibitor LY2109761. In subsequent in vitro and in vivo molecular and immunological analyses, the combined monitoring of gene regulation of three genes, namely TMEPAI, OCIAD2, and SMAD7 was established as novel biomarkers for anti-TGFbeta based therapies. Interpretation: Overall, the proposed algorithm of biomarker identification is easily adapted towards other drug candidates for which gene regulation can be established in peripheral blood.
Application of T cell-based transcriptomics to identify three candidate biomarkers for monitoring anti-TGFbetaR therapy.
Specimen part
View SamplesIn adult cancers, epigenetic changes and aberrant splicing of the DNMT3B is commonly observed, and the pattern of gene methylation and expression has been shown to be modified by DNMT3B7, a truncated protein of DNMT3B. Much less is known about the mechanism of epigenetic changes in the pediatric cancer neuroblastoma. To investigate if aberrant DNMT3B transcripts alter DNA methylation, gene expression and tumor phenotype in neuroblastoma, we measured DNMT3B isoform expression in primary tumors and cell lines. Higher levels of DNMT3B7 were detected in differentiated ganglioneuroblastomas compared to undifferentiated neuroblastomas, suggesting that expression of DNMT3B7 may induce a less clinically aggressive tumor phenotype. To test this hypothesis, we investigated the effects of forced DNMT3B7 in neuroblastoma cells. We found that DNMT3B7 expression significantly inhibited neuroblastoma cell proliferation in vitro, and in neuroblastoma xenografts, DNMT3B7 decreased angiogenesis and tumor growth. DNMT3B7-positive cells had higher levels of total genomic methylation, and RNA-sequencing revealed a dramatic decrease in expression of FOS and JUN family members, AP1 complex components. Consistent with the established antagonistic relationship between AP1 expression and retinoic acid receptor activity, decreased proliferation and increased differentiation was seen in the DNMT3B7-expressing neuroblastoma cells following treatment with all trans retinoic acid (ATRA) compared to controls. Our results demonstrate that high levels of DNMT3B7 modify the epigenome in neuroblastoma cells, induce changes in gene expression, inhibit tumor growth, and increase sensitivity to ATRA. Further knowledge regarding mechanisms by which DNMT3B7 regulates gene methylation may ultimately lead to the development of therapeutic strategies that reverse the epigenetic aberrations that drive neuroblastoma pathogenesis. Overall design: DNMT3B7, a truncated DNMT3B isoform, was stably transfected into an N-type neuroblastoma cell line (LA1-55n) using a Tet-off inducible system. DNMT3B7 expressing cells were compared to vector control cells after 21 days of induction.
Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma.
Cell line, Subject
View Samples