refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 226 results
Sort by

Filters

Technology

Platform

accession-icon GSE38571
Integrated transcriptomic and epigenomic analysis of primary human lung cell differentiation
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina ratRef-12 v1.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrated transcriptomic and epigenomic analysis of primary human lung epithelial cell differentiation.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE38570
Integrated transcriptomic and epigenomic analysis of primary human lung cell differentiation (Rat)
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Analysis of gene expression during differentiation of alveolar epithelial type 2 (AT2) cells into AT1 cells. Timepoints taken at Day 0 (AT2 cell), Days 2, 4, and 6 in culture (differentiating) and Day 8 in culture (AT1-like cells).

Publication Title

Integrated transcriptomic and epigenomic analysis of primary human lung epithelial cell differentiation.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE32867
DNA methylation and gene expression in lung adenocarcinoma
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression.

Sample Metadata Fields

Sex, Age, Specimen part, Race, Subject

View Samples
accession-icon GSE32863
Gene expression analysis of lung adenocarcinoma and matched adjacent non-tumor lung tissue
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Gene expression profiling of 60 lung adenocarcinoma tumors and their matched histologically normal adjacent lung tissue samples were analyzed using Illumina HumanWG-6 v3.0 expression beadchip. We integrated these data with DNA methylation profiles of the same samples to identify potential DNA methylation regulated genes.

Publication Title

Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression.

Sample Metadata Fields

Sex, Age, Specimen part, Race, Subject

View Samples
accession-icon SRP055932
Cross-species transcriptome profiling identifies new alveolar epithelial type I cell-specific genes
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Diseases involving the distal lung alveolar epithelium include chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and lung adenocarcinoma. Accurate labeling of specific cell types is critical for determining the contribution of each to pathogenesis of these diseases. The distal lung alveolar epithelium is comprised of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. While cell type-specific markers, most prominently surfactant protein C (SFTPC), have allowed detailed studies of AT2 cell differentiation and their roles in disease, studies of AT1 cells have been hampered by lack of genes with expression unique to AT1 cells. To address this, we performed genome-wide expression profiling of multiple rat organs alongside purified rat AT2, AT1 and in vitro differentiated AT1-like cells, resulting in identification of 54 candidate AT1 cell markers. Cross-referencing with genes upregulated in human in vitro differentiated AT1-like cells narrowed the potential list to 18 candidate genes. Testing the top four candidate genes at RNA and protein levels revealed GRAM domain 2 (GRAMD2), a protein of unknown function, as unique to AT1 cells, while SCNN1G within lung is restricted to AT1 cells. RNAseq confirmed that GRAMD2 is transcriptionally silent in human AT2 cells. Immunofluorescence of mouse alveoli verified that GRAMD2 expression is restricted to the plasma membrane of AT1 cells. These new AT1 cell-specific genes, with GRAMD2 as a leading candidate, will enhance AT1 cell isolation, investigation of alveolar epithelial cell differentiation potential, and contribution of AT1 cells to distal lung diseases. Overall design: RNAseq of purified primary human alveolar epithelial type 2 (AT2) and in vitro differentiated type 1 (AT1-like) cells.

Publication Title

Cross-Species Transcriptome Profiling Identifies New Alveolar Epithelial Type I Cell-Specific Genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP059363
Epigenome-wide analysis of DNA methylation in lung tissue shows concordance with blood studies and identifies tobacco smoke-inducible enhancers
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Smoking-associated DNA hypomethylation has been observed in blood cells and linked to lung cancer risk. However, its cause and mechanistic relationship to lung cancer remain unclear. We studied the association between tobacco smoking and epigenome-wide methylation in non-tumor lung (NTL) tissue from 237 lung cancer cases in the Environment And Genetics in Lung cancer Etiology study, using the Infinium HumanMethylation450 BeadChip. We identified seven smoking-associated hypomethylated CpGs (P?<?1.0?×?10-7), which were replicated in NTL data from The Cancer Genome Atlas. Five of these loci were previously reported as hypomethylated in smokers'' blood, suggesting that blood-based biomarkers can reflect changes in the target tissue for these loci. Four CpGs border sequences carrying aryl hydrocarbon receptor binding sites and enhancer-specific histone modifications in primary alveolar epithelium and A549 lung adenocarcinoma cells. A549 cell exposure to cigarette smoke condensate increased these enhancer marks significantly and stimulated expression of predicted target xenobiotic response-related genes AHRR (P?=?1.13?×?10-62) and CYP1B1 (P?<?2.49?×?10-61). Expression of both genes was linked to smoking-related transversion mutations in lung tumors. Thus, smoking-associated hypomethylation may be a consequence of enhancer activation, revealing environmentally-induced regulatory elements implicated in lung carcinogenesis. Overall design: RNAseq of DMSO or cigarette smoke condensate (CSC)-treated A549 human lung adenocarcinoma cells. Cells were treated for either 48 hours or 2 weeks, as indicated.

Publication Title

Epigenome-wide analysis of DNA methylation in lung tissue shows concordance with blood studies and identifies tobacco smoke-inducible enhancers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE63882
Expression profiling of 40 NSCLC cell lines
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

INTRODUCTION: CDKN2A (p16) inactivation is common in lung cancer and occurs via homozygous deletions, methylation of promoter region, or point mutations. Although p16 promoter methylation has been linked to KRAS mutation and smoking, the associations between p16 inactivation mechanisms and other common genetic mutations and smoking status are still controversial or unknown. METHODS: We determined all three p16 inactivation mechanisms with the use of multiple methodologies for genomic status, methylation, RNA, and protein expression, and correlated them with EGFR, KRAS, STK11 mutations and smoking status in 40 cell lines and 45 tumor samples of primary non-small-cell lung carcinoma. We also performed meta-analyses to investigate the impact of smoke exposure on p16 inactivation. RESULTS: p16 inactivation was the major mechanism of RB pathway perturbation in non-small-cell lung carcinoma, with homozygous deletion being the most frequent method, followed by methylation and the rarer point mutations. Inactivating mechanisms were tightly correlated with loss of mRNA and protein expression. p16 inactivation occurred at comparable frequencies regardless of mutational status of EGFR, KRAS, and STK11, however, the major inactivation mechanism of p16 varied. p16 methylation was linked to KRAS mutation but was mutually exclusive with EGFR mutation. Cell lines and tumor samples demonstrated similar results. Our meta-analyses confirmed a modest positive association between p16 promoter methylation and smoking. CONCLUSION: Our results confirm that all the inactivation mechanisms are truly associated with loss of gene product and identify specific associations between p16 inactivation mechanisms and other genetic changes and smoking status.

Publication Title

Molecular portraits of epithelial, mesenchymal, and hybrid States in lung adenocarcinoma and their relevance to survival.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE60179
Role of Ror2 in primordial germ cell migration
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Primordial germ cells (PGCs), the embryonic precursors of eggs and sperm, are a unique model for identifying and studying regulatory mechanisms in singly migrating cells. From their time of specification to eventual colonization of the gonad, mouse PGCs traverse through and interact with many different cell types, including epithelial cells and mesenchymal tissues. Work in drosophila and zebrafish have identified many genes and signaling pathways involved in PGC migration, but little is known about this process in mammals.

Publication Title

Discrete somatic niches coordinate proliferation and migration of primordial germ cells via Wnt signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16590
Ascorbate effect on serum free cultured hESC
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Ascorbate activates CD30 expression and causes widespread specific demethylation of the epigenome of serum free cultured hESC.

Publication Title

Vitamin C promotes widespread yet specific DNA demethylation of the epigenome in human embryonic stem cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE46403
Vitamin C induces Tet-dependent DNA demethylation in ES cells to promote a blastocyst-like methylome
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact