This SuperSeries is composed of the SubSeries listed below.
Gene copy number aberrations are associated with survival in histologic subgroups of non-small cell lung cancer.
Specimen part
View SamplesHypothesis: Non-small cell lung cancer (NSCLC) is characterized by a multitude of genetic aberrations with unknown clinical impact. In this study, we aimed to identify gene copy number changes that correlate with clinical outcome in NSCLC. To maximize the chance to identify clinically relevant events, we applied a strategy involving two prognostically extreme patient groups.
Gene copy number aberrations are associated with survival in histologic subgroups of non-small cell lung cancer.
Specimen part
View SamplesThe cerebral cortex underwent a rapid expansion and complexification during recent primate evolution, but the underlying developmental mechanisms remain essentially unknown.
Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.
Age, Specimen part
View SamplesAnalysis of HeLa cells following depletion of BRCA1 tumor supressor using RNAi against BRCA1. Results provide insight into the molecular mechanisms underlying loss of the BRCA1 function.
BRCA1 represses amphiregulin gene expression.
Treatment
View SamplesThe delicate interaction between cancer cells and the surrounding stroma plays an essential role in all stages of tumourigenesis. Despite the significance of this interplay, alterations in protein composition underlying tumour-stroma interactions are largely unknown. The aim of this study was to identify stromal proteins with clinical relevance in non-small cell lung cancer.
CD99 is a novel prognostic stromal marker in non-small cell lung cancer.
Specimen part, Subject
View SamplesSaturated fatty acids (SFA) are widely thought to induce inflammation in adipose tissue (AT), while monounsaturated fatty acids (MUFA) are purported to have the opposite effect; however, it is unclear if individual SFA and MUFA behave similarly. Our goal was to examine adipocyte transcriptional networks regulated by individual SFA (palmitic acid, PA; stearic acid, SA) and MUFA (palmitoleic acid, PMA; oleic acid, OA).
Individual saturated and monounsaturated fatty acids trigger distinct transcriptional networks in differentiated 3T3-L1 preadipocytes.
Specimen part
View SamplesWhole blood (paxgene) gene expression was measured using Affymetrix microarray from 377 individuals with rheumatoid arthritis.
Integrative genomic deconvolution of rheumatoid arthritis GWAS loci into gene and cell type associations.
Sex, Age, Specimen part, Disease
View SamplesTo identify metastasis suppressor genes, which are functionally compromised in late-stage breast cancer, we compared the gene expression profiles of an established breast cancer progression cell line model and leveraged large amounts of publically available data by applying multiple bioinformatics filters. Here we report the identification of serum deprivation response (SDPR, also known as cavin-2) as a bona fide metastasis suppressor, capable of impairing the metastatic growth of cancer cells while having no effect on the growth of primary tumors.
SDPR functions as a metastasis suppressor in breast cancer by promoting apoptosis.
Disease, Disease stage, Cell line
View SamplesIL13R2 overexpression promotes metastasis of basal-like breast cancers
Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis.
Specimen part, Cell line, Treatment
View SamplesQuaking are RNA binding proteins, which are known to regulate the expression of different genes at the post-transcriptional level. Genetic interference with quaking a (qkia) and quaking c (qkic) leads to major myofibril defects during zebrafish development, without affecting early muscle differentiation. In order to understand how qkia and qkic jointly regulate myofibril formation, we performed a comparative analysis of the transcriptome of qkia/qkic (qkia mutant injected with qkic morpholino) versus control embryos. We show that Quaking activity is required for accumulation of the muscle-specific tropomyosin 3 transcript, tpm3.1. Whereas interference with tmp3.1 function disrupts myofibril formation, reintroducing tpm3.1 transcripts into embryos with reduced Quaking activity can restore structured myofibrils. Thus, we identify tropomyosin as an essential component in the process of myofibril formation and as a relay downstream of the regulator proteins Quaking. Overall design: Transcriptome of control versus qkia/qkic embryos at 24-26hpf. Biological triplicate were prepared for both condition (3x2 samples).
Quaking RNA-Binding Proteins Control Early Myofibril Formation by Modulating Tropomyosin.
No sample metadata fields
View Samples