refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 758 results
Sort by

Filters

Technology

Platform

accession-icon GSE14537
Contribution of sequence and structure to mRNA-binding of Argonaute/miRNA complexes and degradation of miRNA targets
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Relative contribution of sequence and structural features to the mRNA-binding of Argonaute/miRNA complexes and the degradation of miRNA targets

Publication Title

Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP038919
Transcriptome wide identification of Dicer binding in human and C. elegans reveals a variety of substrates (HEK PAR-CLIP)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Dicer is a deeply conserved endoribonuclease with key functions in small RNA biogenesis. Here we employed PAR-CLIP/iPAR-CLIP to identify direct Dicer binding sites in the transcriptomes of human cells and human. We found hundreds of novel miRNAs and non-canonical Dicer substrates with high sensitivity. Small RNA production depended on structure of the binding site and is globally biased towards the 5'' arm of hairpins. Unexpectedly, in both species Dicer bound numerous hairpins inside mRNAs without observable small RNA production. Our data revealed ~100 mRNAs of protein coding genes to be targeted in both human and worm. These mRNAs significantly overlapped with the RNAi pathway. We also, unexpectedly, found that mitochondrial transcripts are Dicer targets in both species. We demonstrate functional consequences of Dicer binding by perturbation analysis. Taken together,we provide the first genome-wide catalog of direct Dicer targets. Our results suggest widespread function outside of miRNA biogenesis. Overall design: PAR-CLIP basically as described previously (Hafner et al. 2010).

Publication Title

A variety of dicer substrates in human and C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP050055
A variety of Dicer substrates in human and C. elegans (HEK RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The endoribonuclease Dicer is known for its central role in the biogenesis of eukaryotic small RNAs/microRNAs. Despite its importance, Dicer target transcripts have not been directly mapped. Here, we apply biochemical methods to human cells and C. elegans and identify thousands of Dicer binding sites. We find known and hundreds of novel miRNAs with high sensitivity and specificity. We also report structural RNAs, promoter RNAs, and mitochondrial transcripts as Dicer targets. Interestingly, most Dicer binding sites reside on mRNAs/lncRNAs and are not significantly processed into small RNAs. These passive sites typically harbor small, Dicer-bound hairpins within intact transcripts and generally stabilize target expression. We show that passive sites can sequester Dicer and reduce microRNA expression. mRNAs with passive sites were in human and worm significantly associated with processing-body/granule function. Together, we provide the first transcriptome-wide map of Dicer targets and suggest conserved binding modes and functions outside the miRNA pathway. Overall design: Regulatory impact of Dicer binding was assessed by knock down experiments in human HEK293 cells. Drosha knockdown and mock transfections were used as controls. Knockdown was performed with two independent siRNAs each. In total 5 samples.

Publication Title

A variety of dicer substrates in human and C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP038921
Transcriptome wide identification of Dicer binding in human and C. elegans reveals a variety of substrates (HEK RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Dicer is a deeply conserved endoribonuclease with key functions in small RNA biogenesis. Here we employed PAR-CLIP/iPAR-CLIP to identify direct Dicer binding sites in the transcriptomes of human cells and human. We found hundreds of novel miRNAs and non-canonical Dicer substrates with high sensitivity. Small RNA production depended on structure of the binding site and is globally biased towards the 5'' arm of hairpins. Unexpectedly, in both species Dicer bound numerous hairpins inside mRNAs without observable small RNA production. Our data revealed ~100 mRNAs of protein coding genes to be targeted in both human and worm. These mRNAs significantly overlapped with the RNAi pathway. We also, unexpectedly, found that mitochondrial transcripts are Dicer targets in both species. We demonstrate functional consequences of Dicer binding by perturbation analysis. Taken together,we provide the first genome-wide catalog of direct Dicer targets. Our results suggest widespread function outside of miRNA biogenesis. Overall design: Regulatory impact of Dicer binding was assessed by knock down experiments in human HEK293 cells. Drosha knockdown and mock transfections were used as controls. In total 3 samples.

Publication Title

A variety of dicer substrates in human and C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP038925
Transcriptome wide identification of Dicer binding in human and C. elegans reveals a variety of substrates (small RNA AGO-IP)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Dicer is a deeply conserved endoribonuclease with key functions in small RNA biogenesis. Here we employed PAR-CLIP/iPAR-CLIP to identify direct Dicer binding sites in the transcriptomes of human cells and human. We found hundreds of novel miRNAs and non-canonical Dicer substrates with high sensitivity. Small RNA production depended on structure of the binding site and is globally biased towards the 5'' arm of hairpins. Unexpectedly, in both species Dicer bound numerous hairpins inside mRNAs without observable small RNA production. Our data revealed ~100 mRNAs of protein coding genes to be targeted in both human and worm. These mRNAs significantly overlapped with the RNAi pathway. We also, unexpectedly, found that mitochondrial transcripts are Dicer targets in both species. We demonstrate functional consequences of Dicer binding by perturbation analysis. Taken together,we provide the first genome-wide catalog of direct Dicer targets. Our results suggest widespread function outside of miRNA biogenesis. Overall design: Argonaute loaded small RNAs were extracted from FLAG:AGO2 and FLAG:AGO3 expressing HEK293 cells. Small RNA was purified and length selected (see supplementary methods).

Publication Title

A variety of dicer substrates in human and C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE93611
Time-course expression data from HEK293RAF1:ER cells stimulated with 4OHT, U0126, CYHX, ActD, EGF, FGF, or IGF and labelled with 4SU
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An immediate-late gene expression module decodes ERK signal duration.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE72919
Time-course expression data from HEK293RAF1:ER cells stimulated with 4OHT, U0126, CYHX, ActD, EGF, FGF, or IGF
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We integrate experimental data and mathematical modelling to unveil how ERK signal duration is relayed to mRNA dynamics.

Publication Title

An immediate-late gene expression module decodes ERK signal duration.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP028887
Differential Protein Occupancy Profiling of the mRNA Transcriptome
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500, IlluminaHiSeq2000

Description

Protein-RNA interactions are fundamental to core biological processes, such as mRNA splicing, localization, degradation and translation. We have developed a photoreactive nucleotide-enhanced UV crosslinking and oligo(dT) purification approach to identify the mRNA-bound proteome using quantitative proteomics and to display the protein occupancy on mRNA transcripts by next-generation sequencing (Baltz and Munschauer et al. 2012). Our current work focuses on streamlining and extending protein occupancy profiling on poly(A)-RNA. Our objectives are to identify previously unknown protein-bound transcripts and, more importantly, to assess global and local differences in protein occupancy across different biological conditions. To this end, we have implemented poppi, the first pipeline for differential analysis of protein occupancy profiles. We have applied our analysis pipeline to pinpoint changes in occupancy profiles of MCF7 cells against already published HEK293 cells [GSE38157]. Overall design: We generated protein occupancy cDNA libraries for two biological replicates. Briefly, we crosslinked 4SU-labeled MCF7 cells and purified protein-mRNA complexes using oligo(dT)-beads. The precipitate was treated with RNAse I to reduce the protein-crosslinked RNA fragments to a length of about 30-60 nt. To remove non-crosslinked RNA, protein-RNA complexes were precipitated with ammonium sulfate and blotted onto nitrocellulose. The RNA was recovered by Proteinase K treatment, ligated to cloning adapters, and reverse transcribed. The resulting cDNA libraries were PCR-amplified and next-generation sequenced.

Publication Title

Differential protein occupancy profiling of the mRNA transcriptome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP041130
MOV10 Is a 5'' to 3'' RNA Helicase Contributing to UPF1 mRNA Target Degradation by Translocation along 3''UTRs (expression)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

RNA helicases are important regulators of gene expression that act by remodeling RNA secondary structures and as RNA-protein interactions. Here, we demonstrate that MOV10 has an ATP-dependent 5'' to 3'' in vitro RNA unwinding activity and determine the RNA-binding sites of MOV10 and its helicase mutants using PAR-CLIP. We find that MOV10 predominantly binds to 3'' UTRs upstream of regions predicted to form local secondary structures and provide evidence that MOV10 helicase mutants are impaired in their ability to translocate 5'' to 3'' on their mRNA targets. MOV10 interacts with UPF1, the key component of the nonsense-mediated mRNA decay pathway. PAR-CLIP of UPF1 reveals that MOV10 and UPF1 bind to RNA in close proximity. Knockdown of MOV10 resulted in increased mRNA half-lives of MOV10-bound as well as UPF1-regulated transcripts, suggesting that MOV10 functions in UPF1-mediated mRNA degradation as an RNA clearance factor to resolve structures and displace proteins from 3'' UTRs. Overall design: Flp-In T-REx HEK293 cells expressing FLAG/HA-tagged MOV10 WT, MOV10 K530A, MOV10 D645N and UPF1 were used to determine the protein-RNA interaction sites of RNA helicases MOV10 and UPF1 as well as MOV10 inactive variants using PAR-CLIP in combination with next generation sequencing. mRNA half-life changes of MOV10-targeted mRNA were determined by measuring mRNA half-lives by mRNA sequencing of mock and MOV10-depleted HEK293 cells.

Publication Title

MOV10 Is a 5' to 3' RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3' UTRs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP022591
Identification of LIN28-bound mRNAs reveals features of target recognition and regulation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The conserved human LIN28 RNA-binding proteins function in development, maintenance of pluripotency and oncogenesis. We used PAR-CLIP and a newly developed variant of this method, iDo-PAR-CLIP, to identify LIN28B targets as well as sites bound by the individual RNA binding domains of LIN28B in the human transcriptome at nucleotide resolution. The position of target binding sites reflected the known structural relative orientation of individual LIN28B binding domains, validating iDo-PAR-CLIP. Our data suggest that LIN28B directly interacts with most expressed mRNAs and members of the let-7 microRNA family. The Lin28 binding motif detected in pre-let-7 was enriched in mRNA sequences bound by LIN28B. Upon LIN28B knock down, cell proliferation and the cell cycle were strongly impaired. Quantitative shotgun proteomics of LIN28B depleted cells revealed significant reduction of protein synthesis from its RNA targets that function in translation, mRNA splicing and cell cycle control. Computational analyses provided evidence that the strength of protein synthesis reduction correlated with the location of LIN28B binding sites within target transcripts. Overall design: We used PAR-CLIP and a newly developed variant of this method, iDo-PAR-CLIP, to identify LIN28B targets as well as sites bound by the individual RNA binding domains of LIN28B in the human transcriptome at nucleotide resolution.

Publication Title

Identification of LIN28B-bound mRNAs reveals features of target recognition and regulation.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact