refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 758 results
Sort by

Filters

Technology

Platform

accession-icon GSE39731
Expression arrays of KRASG12D rhabdomyosarcoma models in zebrafish
  • organism-icon Danio rerio
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Rhabdomyosarcoma is a pediatric malignancy thought to arise from the uncontrolled proliferation of myogenic cells. Here, we have generated models of rhabdomyosarcoma in the zebrafish by inducing oncogenic KRASG12D expression at different stages during muscle development. Several zebrafish promoters were used including the cdh15 and rag2 promoters that drive gene expression in early muscle progenitors, and the mylz2 promoter that expresses in differentiating myoblasts. The tumors that developed differed in their ability to recapitulate normal myogenesis. cdh15:KRASG12D and rag2:KRASG12D fish developed tumors that displayed an inability to fully undergo muscle differentiation by histologic appearance and gene expression analyses. In contrast, mylz2:KRASG12D tumors more closely resembled mature skeletal muscle and were most similar to well-differentiated human rhabdomyosarcoma by gene expression. mylz2:KRASG12D fish showed significantly improved survival compared to cdh15:KRASG12D and rag2:KRASG12D fish. Tumor-propagating activity was enriched in myf5-expressing cell populations within all of the tumor types. Our results demonstrate that oncogene expression at different stages during muscle development has profound effects on the ability of tumor cells to recapitulate normal myogenesis, altering the tumorigenic capability of these cells.

Publication Title

Zebrafish rhabdomyosarcoma reflects the developmental stage of oncogene expression during myogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP130950
Cell of origin dictates aggression and stem cell activity in acute lymphoblastic leukemia
  • organism-icon Danio rerio
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Subclassification of lymphoid neoplasms is often based on the presumed cell of origin based on T and B progenitor gene expression and the effect of cell lineage on influencing functional characteristics such as aggression and self-renewal capacity is largely unknown, accounted for in part, by lack of experimental models to address these questions. Here, we have used transgenic zebrafish to create the first models of Myc-induced B-ALL and mixed phenotypic B/T-ALL, opening new avenues for studying the these leukemias in the zebrafish. Our work has utilized syngeneic strain zebrafish, limiting dilution cell transplantation, and the widely reported rag2-Myc transgenic model to provide new understanding of how strain differences can underlie leukemia onset in the zebrafish model. Even more importantly, our work now for the first time, has allowed assessment of cell lineage on dictating aggression and leukemia stem cell frequency independent of the underlying oncogenic driver. In total, our work uncoveres that T-ALLs are more aggressive and have higher numbers of leukemia stem cells when compared with B-ALL and mixed phenotypic ALL. Furthermore, analysis of our biphenotypic B/T-ALL suggests that B cell pathways lock cells in less aggressive and lower stem cell fates and are dominant in regulating these processes when T cell pathways are co-regulated within ALL cells. Overall design: The goal of our study is to determine the transcriptional profiles of high and low self-renewing capacity tumors. 20 samples total: 11 unique samples (9 samples with biological replicates), 6 high self-renewing tumors (>1% cells could initiate leukemia) and 5 low self-renewing tumors (<1% of cells could initiate leukemia).

Publication Title

Cell of origin dictates aggression and stem cell number in acute lymphoblastic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22841
Discrete subsets of myogenic and mesenchymal precursors give rise to soft tissue sarcomas of distinct lineage differentiation
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This work examines sarcoma formation within discrete subsets of KRAS(G12V)-expressing p16p19null myogenic and mesenchymal cells found normally in skeletal muscle. We show that prospectively isolated skeletal muscle precursor cells (SMPs) within the satellite cell pool can serve as cancer cells-of-origin for mouse rhabdomyosarcomas (soft tissue sarcomas with features of myogenic differentiation). Alternatively, non-myogenic progenitors (ScaPCs) induce sarcomas lacking myogenic differentiation markers.

Publication Title

Sarcomas induced in discrete subsets of prospectively isolated skeletal muscle cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE7253
Puberty and Diabetes in the Kidney
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Puberty unmasks or accelerates nephropathies, including the nephropathy of diabetes mellitus (DM). A number of cellular systems implicated in the kidney disease of DM interweave, forming an interdependent functional web. We performed focused microarray analysis to test the hypothesis that one or more genes in the transforming growth factor beta (TGF-) signaling system would be differentially regulated in male rats depending on the age of onset of DM.

Publication Title

Prepubertal onset of diabetes prevents expression of renal cortical connective tissue growth factor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66303
Transcriptional responses to i.v. administered I-131 in various mouse normal tissues underlie diurnal variation
  • organism-icon Mus musculus
  • sample-icon 136 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Circadian rhythm study on transcriptional responses to i.v. administered 90 kBq iodine-131 after 24h in mouse kidney cortex and medulla, liver, lungs, spleen, and thyroid.

Publication Title

Circadian rhythm influences genome-wide transcriptional responses to (131)I in a tissue-specific manner in mice.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE32425
Expression profile of zebrafish embryonal rhabdomyosarcoma
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Fluorescent-labeled zebrafish RAS-induced embryonal rhabdomyosarcoma (ERMS) were created to facilitate in vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in diverse cellular compartments. Using this strategy, we have identified a molecularly distinct ERMS cell subpopulation that expresses high levels of myf5 and is enriched for ERMS-propagating potential when compared with other tumor-derived cells.

Publication Title

In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP082453
Single cell transcriptome sequencing of mammary stem cells in the pubertal mammary gland
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The mammary gland is a highly dynamic organ that mainly develops during puberty. Based on morphology and proliferation analysis, mammary stem cells (MaSCs) are thought to be close to or reside in the terminal end buds (TEBs) during pubertal development. However, exclusive stem cell markers are lacking, and therefore the true identity of MaSCs, including their location, multiplicity, dynamics and fate during branching morphogenesis, has yet to be defined. To gain more insights into the molecular identity and heterogeneity of the MaSC pool, we performed single cell transcriptome sequencing of mammary epithelial cells micro-dissected from ducts and TEBs during puberty. These data show that the behaviour of MaSCs cannot be directly linked to a single expression profile. Instead, morphogenesis of the mammary epithelium relies upon a heterogeneous population of MaSCs that functions long-term as a single equipotent pool of stem cells. Overall design: Ducts and terminal end buds were micro-dissected from the 4th and the 5th murine mammary gland at 5 weeks-of-age, dissociated into single cells, and FACS sorted. Single-cell transcriptomics was performed on live cells using an automated version of CEL-seq2 on live, FACS sorted cells. The StemID algorithm was used to identify clusters of cells corresponding to basal and luminal cells types derived from ducts and terminal end buds.

Publication Title

Identity and dynamics of mammary stem cells during branching morphogenesis.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE69296
Active FOXO1 is a Key Determinant of Isoform-Specific Progesterone Receptor Transactivation and Senescence Programming
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Progesterone promotes differentiation coupled to proliferation and pro-survival in the breast, but inhibits estrogen-driven growth in the reproductive tract and ovaries. Herein, it is demonstrated, using progesterone receptor (PR) isoform-specific ovarian cancer model systems, that PR-A and PR-B promote distinct gene expression profiles that differ from PR-driven genes in breast cancer cells. In ovarian cancer models, PR-A primarily regulates genes independently of progestin, while PR-B is the dominant ligand-dependent isoform. Notably, FOXO1 and the PR/FOXO1 target-gene p21 (CDKN1A) are repressed by PR-A, but induced by PR-B. In the presence of progestin, PR-B, but not PR-A, robustly induced cellular senescence via FOXO1-dependent induction of p21 and p15 (CDKN2B). Chromatin immunoprecipitation (ChIP) assays performed on PR-isoform specific cells demonstrated that while each isoform is recruited to the same PRE-containing region of the p21 promoter in response to progestin, only PR-B elicits active chromatin marks. Overexpression of constitutively active FOXO1 in PR-A-expressing cells conferred robust ligand-dependent upregulation of the PR-B target genes GZMA, IGFBP1, and p21, and induced cellular senescence. In the presence of endogenous active FOXO1, PR-A was phosphorylated on Ser294 and transactivated PR-B at PR-B target genes; these events were blocked by the FOXO1 inhibitor (AS1842856). PR isoform-specific regulation of the FOXO1/p21 axis recapitulated in human primary ovarian tumor explants treated with progestin; loss of progestin sensitivity correlated with high AKT activity.

Publication Title

Active FOXO1 Is a Key Determinant of Isoform-Specific Progesterone Receptor Transactivation and Senescence Programming.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE46850
A Common Docking (CD) Domain in Progesterone Receptor-B Links MKP3-Dependent Rapid Signaling Events to JAK/STAT Regulation of Gene Expression Required for Breast Cancer Cell Proliferation
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Progesterone receptors (PRs) are critical context-dependent transcription factors required for normal uterine (PR-A) and mammary gland (PR-B) development. Progesterone is proliferative in the breast, where PR-target genes include paracrine factors that mediate mammary stem cell self-renewal. In the context of altered signal transduction that typifies breast tumorigenesis, dysregulated (i.e. hyper-phosphorylated) PRs likely contribute to tumor progression by promoting cancer cell pro-survival and proliferation. Notably, in breast cancer cells, progestin-bound PRs induce rapid MAPK activation leading to selective regulation of growth-promoting genes by phosphorylated PR species. Functional domains within PR that interact with c-Src and estrogen receptors (ER) have been identified as indirect routes to MAPK activation. Herein, we describe a common docking (CD) domain located within the PR-B N-terminus, a motif first described in MAPKs that facilitates direct interactions between MAPKs and MEK1 or MAPK-phosphatases (MKPs). Mutation of negatively-charged amino acids, previously determined to be critical for CD domain function in MAPKs, within PR-B (mCD PR) did not alter MEK-binding or progestin-induced rapid signaling (i.e. MAPK activation) and PR transcriptional activity as measured by PRE-luciferase (reporter) assays. Microarray gene-expression analysis revealed that endogenous genes regulated by wt PR, but not mCD PR, are involved in critical cellular pathways regulating growth, proliferation, survival, and cancer. mCD PR failed to undergo ligand-induced phosphorylation on Ser81, a ck2-dependent site required for progestin-regulation of select growth-promoting genes (BIRC3, HSD112, HbEGF). Progestin-induced PR Ser81 phosphorylation mapped to CD domain-dependent binding of PR-B to MKP3, but did not require phosphatase activity. Receptors containing either mutant CD domains (mCD PR) or point mutations of Ser81 (S79/81A PR) failed to upregulate STAT5 and Wnt1, key PR-target gene products that act as critical mediators of mammary stem cell expansion. Inhibition of JAK/STAT signaling blocked progestin-induced STAT5 and Wnt1 expression. ChIP assays demonstrated that wt, but not phospho-mutant (S79/81A), PR-B was co-recruited to a PRE-containing enhancer region of the Wnt1 gene along with MKP3, ck2 and STAT5. Our studies reveal a novel scaffolding action of MKP3 mediated by interaction with the PR CD domain and required for ck2-dependent PR Ser81 phosphorylation. Co-regulation of select target genes by phospho-Ser81 PR and phospho-STAT5 is likely a global mechanism required for the activation of growth promoting programs active during normal mammary gland development and relevant to mechanisms of breast cancer progression.

Publication Title

A Common Docking Domain in Progesterone Receptor-B links DUSP6 and CK2 signaling to proliferative transcriptional programs in breast cancer cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE69294
Active FOXO1 is a Key Determinant of Isoform-Specific Progesterone Receptor Transactivation and Senescence Programming
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The progesterone receptor specific gene targets were investigated in ovarian and breast cancer cell lines where FOXO1 was found to be a primary factor that cooperates with PR to activate cellular senescence genes (including p21) specifically in ovarian cells.

Publication Title

Active FOXO1 Is a Key Determinant of Isoform-Specific Progesterone Receptor Transactivation and Senescence Programming.

Sample Metadata Fields

Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact