Positioned nucleosomes limit the access of proteins to DNA and implement regulatory features encoded in eukaryotic genomes. Here we generated the first genome-wide nucleosome positioning map for Schizosaccharomyces pombe and annotated transcription start and termination sites genome-wide. Using this resource we found surprising differences compared to the nucleosome organization in the distantly related yeast Saccharomyces cerevisiae [the cerevisiae data has been published by others (PMID: 17873876) and the raw data is deposited at ArrayExpress(E-MEXP-1172)]. DNA sequence guides nucleosome positioning differently, e.g., poly(dA:dT) elements are not enriched in S. pombe nucleosome-depleted regions (NDRs). Regular nucleosomal arrays emanate more asymmetrically, i.e., mainly co-directionally with transcription, from promoter NDRs, but promoters harbouring the histone variant H2A.Z show regular arrays also upstream. Regular nucleosome phasing in S. pombe has a very short repeat length of 154 base pairs, and requires a remodeler, Mit1, conserved in humans but not found in S. cerevisiae. Nucleosome positioning mechanisms are evidently not universal but evolutionarily plastic.
Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae.
No sample metadata fields
View SamplesThis experiment is designed to detect genes differentially expressed in 2uM erlotinib treatment versus DMSO treatment and to identify differential gene set enrichments.
Inhibition of Casein Kinase 1 Alpha Prevents Acquired Drug Resistance to Erlotinib in EGFR-Mutant Non-Small Cell Lung Cancer.
Specimen part, Cell line
View SamplesThe subsets of immune cells within the human placenta are incompletely described. We used microarray to determine the transcriptional differences between two myeloid subsets in the term human placenta.
Two Distinct Myeloid Subsets at the Term Human Fetal-Maternal Interface.
Specimen part
View SamplesAngiotensin II (Ang II)-mediated vascular smooth muscle cells (VSMC) dysfunction plays a critical role in cardiovascular diseases. However, the gene expression in this process is unclear.
Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells.
Specimen part, Time
View SamplesAngiotensin II (Ang II)-mediated vascular smooth muscle cells (VSMC) dysfunction plays a critical role in cardiovascular diseases. However, the role of microRNAs (miRNAs) in this process is unclear. We used small RNA deep sequencing to profile Ang II-regulated miRNAs in rat VSMC and evaluated their role in VSMC dysfunction. Sequencing results revealed several Ang II-responsive miRNAs and bioinformatics analysis showed that their predicted targets can modulate biological processes relevant to cardiovascular diseases. Overall design: Examined 4 samples of Rat VSMC. Control (without Ang II treatment) and 3 samples treated with Ang II for 1h, 3h, and 24h. Compared the changes in gene expression in Ang II treated samples relative to control samples.
Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells.
No sample metadata fields
View SamplesMacrophage dysfunction and polarization plays key role in chronic inflammation associated with diabetes and its complications. However, the effect of diabetes on macrophage transcriptome including long non-coding RNAs is not known. Here, we analyzed global changes in transcriptome of bone marrow macrophages isolated from type 2 diabetic db/db mice and control littermates db/+ mice using high throughput RNA-seq technique. Data analysis showed that expression of genes relevant to fibrosis, cell adhesion and inflammation were altered in diabetic db/db mice relative to control db/+ mice. Furthermore, expression of several known and novel long non coding RNAs and nearby genes was altered in db/db mice. Gene ontology and IPA showed activation of signaling netwroks relevant to fibrosis, cell adhesion and inflammatory pathways . This study for the first time demonstrated that diabetes profoundly affects macrophage transcriptome including expression of long non coding RNAs and altered the levels of genes relevant to diabetes complications. Overall design: Bone marrow macrophages were isolated from 12 weeks old type 2 diabetic male db/db mice and control littermates db/+ mice. These were differentiated in culture for 7-8 days in the presence of 10 ng/ml of MCSF-1 (BMMC) or 20 ng/ml of GM-CSF (BMGM). Then RNA was extracted and used for RNA-seq.
Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA.
No sample metadata fields
View SamplesTranscriptome profiling was performed on muscle biopsies from patients immediately before Total Knee Arthroplasty and two hours after TKA and tourniquet application. Overall design: RNA was isolated from 10 patients who were give vastus lateralis muscle biopsies immediately before surgery and 2 hours post surgery with tourniquet
Transcriptional profiling and muscle cross-section analysis reveal signs of ischemia reperfusion injury following total knee arthroplasty with tourniquet.
No sample metadata fields
View SamplesHigh grade serous ovarian cancer (HGSOC) can originate from fallopian tube epithelium (FTE) and ovarian surface epithelium (OSE). We report the application of unique spontaneous model that mimics cellular aging for understanding the origin and progression of HGSOC from oviductal epithelium. Oviductal epithelium is equivalent to human FTE. Serial passaging of the outbred mouse CD1 oviductal cells (MOE low) to MOE high produced transformed cells that lead to benign tumors. To understand the altered molecular signaling pathways in MOEhigh cells versus MOElow cells, we performed RNA sequencing. Total RNA was extracted from MOELOW (passages 8, 9, & 10) and MOEHIGH (passages 90, 103, & 113) cells. Each total RNA sample had ribosomal RNA removed using TruSeq Stranded Total RNA with Ribo-Zero (Illumina, San Diego, CA). Strand-specific libraries were constructed and quantitated using Qubit, and cDNAs verified by qPCR. qRT–PCR validation was performed using SYBR Green assays. Samples were barcoded and sequenced using Illumina HiSeq2500 sequencing. The reads were aligned to the Mus musculus genome (mm10) using TopHat, version and were used to determine the expression of known mmu10 gene annotations from the University of California-Santa Cruz website using Cuffdiff version. By merging the individual transcript from Cuffdiff into a single gene annotation file, we determined the differential expression analysis. By applying a false discovery rate (FDR)-adjusted p-value, where significance was set to p = 0.05, statistically significant differential expression was determined. Furthermore, pathway analysis was performed on transcript lists from both cell lines using GeneCoDis to identify the KEGG and Panther pathways that are significantly different between MOELOW and MOEHIGH cell lines. We find that the splicesome, RNA transport, the cell cycle, and DNA replication were the most highly upregulated pathway whereas the repressed pathways included processing in the endoplasmic reticulum, focal adhesion, and the lysosome. RNA sequencing revealed that p53 in MOELOW and MOEHIGH cells was not mutated; however, MOEHIGH cells had a significant upregulation of a splice variant of p53. The splice variant behaved like wild-type on few targets and missense on some transcriptional targets by qRT-PCR. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations. This model provides a framework to uncover a step-wise progression of tumor formation from an oviductal origin to be compared to human disease. Overall design: Examination of altered molecular signaling pathways in 2 cell types.
Spontaneous Transformation of Murine Oviductal Epithelial Cells: A Model System to Investigate the Onset of Fallopian-Derived Tumors.
No sample metadata fields
View SamplesOvarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53. In addition, the p53 signature, or overexpression of p53 protein (usually associated with mutation), is a potential precursor lesion of fallopian tube derived HGSC suggesting an essential role for p53 mutation in early serous tumorigenesis. To further clarify p53-mutation dependent effects on cells, murine oviductal epithelial cells (MOE) were stably transfected with a construct encoding for the R273H DNA binding domain mutation in p53, the most common mutation in HGSC. Mutation in p53 was not sufficient to transform MOE cells, but did significantly increase cell migration. A similar p53 mutation in murine ovarian surface epithelium (MOSE), another potential progenitor cell for serous cancer, was not sufficient to transform the cells nor change migration suggesting tissue specific effects of p53 mutation. Microarray data confirmed expression changes in pro-migratory genes in p53R273H MOE compared to parental cells, which could be reversed by suppressing Slug expression. Combining p53R273H with KRASG12V activation caused transformation of MOE into high-grade sarcomatoid carcinoma when xenografted into nude mice. Elucidating the specific role of p53R273H in the fallopian tube will improve understanding of changes at the earliest stage of transformation and could help develop chemopreventative strategies to prevent the accumulation of additional mutations and reverse progression of the p53 signature thereby, improving survival rates.
Mutant p53 expression in fallopian tube epithelium drives cell migration.
Specimen part
View SamplesGenetically engineering Arabidopsis thaliana to express Isoprene Synthase (ISPS) leads to changes in expression of genes assoiated with many growth regulator signaling pathways and signaling networks involved in abiotic and biotic stress responses. Overall design: Arabidopsis thaliana transformed with a Eucalyptus globulus ISPS (line B2) and a line transformed with empty vector DNA (EV-B3), grown under unstressed growth conditions were subjected to RNA-Seq
Isoprene Acts as a Signaling Molecule in Gene Networks Important for Stress Responses and Plant Growth.
No sample metadata fields
View Samples