refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 383 results
Sort by

Filters

Technology

Platform

accession-icon GSE60542
Revisiting the transcriptional analysis of primary tumors and associated nodal metastases with enhanced biological and statistical controls: application to thyroid cancer
  • organism-icon Homo sapiens
  • sample-icon 88 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The biology underlying nodal metastasis is poorly understood. Transcriptome profiling has helped to characterize both primary tumors seeding nodal metastasis and the metastasis themselves. The interpretation of these data, however, is not without ambiguities. Here we profiled the transcriptomes of 17 papillary thyroid cancer (PTC) nodal metastases, associated primary tumors and primary tumors from N0 patients. We also included patient-matched normal thyroid and lymph node samples as controls to address some limits of previous studies. We found that the transcriptomes of patient-matched primary tumors and metastases were more similar than of unrelated metastases/primary pairs, a result also reported in other organ systems, and that part of this similarity reflected patient background. We found that the comparison of patient-matched primary tumors and metastases was heavily confounded by the presence of lymphoid tissues in the metastasis samples. An original data adjustment procedure was developed to circumvent this problem. It revealed a differential expression of stroma-related gene expression signatures also regulated in other organ systems. The comparison of N0 vs. N+ primary tumors uncovered a signal irreproducible across independent PTC datasets. This signal was also detectable when comparing the normal thyroid tissues adjacent to N0 and N+ tumors, suggesting a cohort specific bias also likely to be present in previous studies with similar statistical power. Classification of N0 vs. N+ yielded an accuracy of 63%, but additional statistical controls not presented in previous studies, revealed that this is likely to occur by chance alone. To address this issue, we used large datasets from The Cancer Genome Atlas and showed that N0 vs. N+ classification rates could not be reached randomly for most cancers. Yet, it was significant, but of limited accuracy (<70%) for thyroid, breast and head and neck cancers.

Publication Title

Revisiting the transcriptional analysis of primary tumours and associated nodal metastases with enhanced biological and statistical controls: application to thyroid cancer.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE43358
Transfer of clinically relevant gene expression signatures in breast cancer: from Affymetrix microarray to Illumina RNA-Sequencing technology
  • organism-icon Homo sapiens
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarrays have revolutionized breast cancer (BC) research by enabling studies of gene expression on a transcriptome-wide scale. Recently, RNA-Sequencing (RNA-Seq) has emerged as an alternative for precise readouts of the transcriptome. To date, no study has compared the ability of the two technologies to quantify clinically relevant individual genes and microarray-derived gene expression signatures (GES) in a set of BC samples encompassing the known molecular BC's subtypes. To accomplish this, the RNA from 57 BCs representing the four main molecular subtypes (triple negative, HER2 positive, luminal A, luminal B), was profiled with Affymetrix HG-U133 Plus 2.0 chips and sequenced using the Illumina HiSeq 2000 platform. The correlations of three clinically relevant BC genes, six molecular subtype classifiers, and a selection of 21 GES were evaluated.

Publication Title

Transfer of clinically relevant gene expression signatures in breast cancer: from Affymetrix microarray to Illumina RNA-Sequencing technology.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE1561
EORTC 10994 clinical trial
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

EORTC 10994 is a phase III clinical trial comparing FEC with ET in patients with large operable, locally advanced or inflammatory breast cancer (www.eortc.be). Frozen biopsies were taken at randomisation. RNA was extracted from 100um thickness of 14G core needle biopsies. Adjacent sections were tested by H&E to confirm >20% tumour cell content. 100 ng total RNA per chip were amplified using the Affymetrix small sample protocol (IVT then Enzo). 49 tumours were tested on Affymetrix U133A chips. The CEL files were quantile normalised together using rma. Clinical response data are not available yet.

Publication Title

Identification of molecular apocrine breast tumours by microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68756
Sox9 controls self-renewal of oncogene targeted cells and links tumor initiation and invasion
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68613
Sox9 controls self-renewal of oncogene targeted cells and links tumor initiation and invasion [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Sox9 is a transcription factor expressed in most solid tumors. However, the molecular mechanisms underlying Sox9 function during tumorigenesis remain unclear. Here, using a genetic mouse model of basal cell carcinoma (BCC), the most frequent cancer in human, we show that Sox9 is expressed from the earliest step of tumor formation in a Wnt/-catenin dependent manner. Deletion of Sox9 together with the constitutive activation of Hedgehog (HH) signaling completely prevents BCC formation and leads to a progressive loss of oncogene expressing cells. Transcriptional profiling of oncogene expressing cells with Sox9 deletion, combined with in vivo ChIP-sequencing uncovers a cancer-specific gene network regulated by Sox9 that promotes stemness, extracellular matrix (ECM) deposition and cytoskeleton remodeling while repressing epidermal differentiation. Our study identifies the molecular mechanisms regulated by Sox9 that links tumor initiation and invasion.

Publication Title

Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6532
Definition of clinically distinct molecular subtypes in estrogen receptor positive breast carcinomas using genomic grade
  • organism-icon Homo sapiens
  • sample-icon 737 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Purpose: A number of microarray studies have reported distinct molecular profiles of breast cancers (BC): basal-like, ErbB2-like and two to three luminal-like subtypes. These were associated with different clinical outcomes. However, although the basal and the ErbB2 subtypes are repeatedly recognized, identification of estrogen receptor (ER)-positive subtypes has been inconsistent. Refinement of their molecular definition is therefore needed.

Publication Title

Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade.

Sample Metadata Fields

Age, Disease stage

View Samples
accession-icon GSE40612
Transcriptional profiling of SmoM2 expressing IFE cells at different stages of basal cell carcinoma formation
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Basal cell carcinoma initiating cells undergo profound and rapid reprogramming into embryonic hair follicle progenitor like fate upon SmoM2 expression. Activation of Wnt/-catenin signaling pathways is required in a cell autonomous manner for the reprogramming of adult IFE progenitors into EHFP-like fate as well as for tumor initiation.

Publication Title

Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2990
Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis
  • organism-icon Homo sapiens
  • sample-icon 185 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background: Histologic grade in breast cancer provides clinically important prognostic information. However, 30%-60% of tumors are classified as histologic grade 2. This grade is associated with an intermediate risk of recurrence and is thus not informative for clinical decision making. We examined whether histologic grade was associated with gene expression profi les of breast cancers and whether such profi les could be used to improve histologic grading.

Publication Title

Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis.

Sample Metadata Fields

Age, Disease stage

View Samples
accession-icon GSE27120
Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment
  • organism-icon Homo sapiens
  • sample-icon 79 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Purpose: There is growing evidence that interaction between stromal and tumor cells is pivotal in breast cancer progression and response to therapy. Since the pioneer work of Allinen et al. suggested that during breast cancer progression striking changes occur in CD10+ stromal cells, we aimed to better characterize this cell population and its clinical relevance.

Publication Title

Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE88770
Expression data from invasive lobular carcinoma
  • organism-icon Homo sapiens
  • sample-icon 115 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: The prognostic value of histologic grade (HG) in invasive lobular carcinoma (ILC) remains uncertain, and most ILC tumors are graded as HG2. Genomic grade (GG) is a 97-gene signature that improves the prognostic value of HG. This study evaluates whether GG may overcome the limitations of HG in ILC.

Publication Title

Genomic grade adds prognostic value in invasive lobular carcinoma.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact