refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 152 results
Sort by

Filters

Technology

Platform

accession-icon GSE12545
Global gene expression analysis between Gfi1+/+ and Gfi1-/- splenic B cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The zinc finger transcription factor growth-factor-independent-1 (Gfi1) has been involved in various cellular differentiation processes. Gfi1 acts as a transcriptional repressor and splicing control factor upon binding to cognate binding sites in regulatory elements of its target genes. Here, we report that Gfi1-deficient mice develop autoimmunity. Gfi1-deficient peripheral B-cells show a hyperproliferative phenotype, leading to expansion of plasma cells, increased levels of nuclear autoantibodies, and immunoglobulin deposition in brain and kidneys. Dysregulation of multiple transcription factors and cell-cycle control elements may contribute to B-cell dependent autoimmunity. Gfi1 thus emerges as a novel master-regulator restricting autoimmunity.

Publication Title

Transcription factor Gfi1 restricts B cell-mediated autoimmunity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP103765
EpCAM controls morphogenetic programs during zebrafish pronephros development
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500, IlluminaHiSeq4000

Description

Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein that is dynamically expressed in human and murine renal epithelia during development. The levels of EpCAM in the renal epithelium are upregulated both during regeneration after ischemia/reperfusion injury and in renal-derived carcinomas. The role of EpCAM in early kidney development, however, has remained unclear. To identify potential programs and signaling pathways that are controlled by EpCAM during pronephros development, we developed a method to study the transcriptomes of specific pronephric segments. Combining laser capture microdissection (LCM) with RNA sequencing (RNA-seq), we generated genome-wide transcriptional profiles of the distal late tubules of wild type and EpCAM-deficient embryos. Overall design: RNA-seq of LCM-dissected pronephric cells from EpCAM-deficient and control zebrafish embryos

Publication Title

EpCAM controls morphogenetic programs during zebrafish pronephros development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE98244
The specific role of RhoC in tumor invasion and metastasis
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The molecules RhoC and RhoA are essential factors for invasion/metastasis of tumor cells proliferation, respectively. RhoC over-expression was especially linked to aggressive cancers, which requires loss of epithelial polarity and deregulation of cellular adhesion. This epithelial-mesenchymal transition (EMT) includes a change in gene expression pattern through several transcription factors, like Snail, ZEB1 or Twist. Here we analyze the potential of RhoC to induce EMT, migration and invasion and to regulate specific genes involved in tumorigenesis. We established stable MCF-10A cell lines with RhoA/RhoC expression under the control of a doxycycline-regulated trans-activator and a transcriptional silencer allowing conditional expression of RhoA and RhoC, respectively. We additionally quantified the transcriptional response from two bacterial toxins: Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1) and Yersinia pseudotuberculosis Cytotoxic Necrotizing Factor (CNFY) to directly activate the endogenous pool of Rho GTPases and characterized changes in morphology, migration and invasion upon induction of RhoA/RhoC expression or activation by the toxins in MCF-10A grown in two- and three-dimensions. The transcriptome response identified PTGS2 as RhoC specific target genes involved in pro-migratory changes which was experimentally validated.

Publication Title

Specific role of RhoC in tumor invasion and metastasis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE104634
Analysis of microarray data reliability and pathway networks using experimental formalin-fixed paraffin-embedded tissue
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

We assessed the usability of microarrays, which base on formalin-fixed paraffin-embedded (FFPE) tissue.

Publication Title

Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE104568
Systematic evaluation of RNA quality and microarray data reliability in formalin-fixed paraffin-embedded and fresh frozen tissue samples
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE104561
Systematic evaluation of RNA quality and microarray data reliability in rat formalin-fixed paraffin-embedded and fresh frozen tissue samples
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

We assessed the feasibility and reliability of microarray studies using formalin-fixed paraffin-embedded (FFPE) tissue-derived RNA compared with transcriptome data from paired fresh-frozen (FF) material. We established a robust workflow to generate highly reproducible microarray datasets from only 2 ng RNA input. For prior quality assessment, inspection of Agilent Bioanalyzer electropherograms, calculation of RNA fragment size distribution (DV200) and routine qPCR for selected references genes were done.

Publication Title

Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE7032
Brown and white adipocyte differentiation
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Attainment of a brown adipocyte cell phenotype in white adipocytes, with their abundant mitochondria and increased energy expenditure potential, is a legitimate strategy for combating obesity. The unique transcriptional regulators of the primary brown adipocyte phenotype are unknown, limiting our ability to promote brown adipogenesis over white. In the present work, we used microarray analysis strategies to study primary preadipocytes, and we made the striking discovery that brown preadipocytes demonstrate a myogenic transcriptional signature, whereas both brown and white primary preadipocytes demonstrate signatures distinct from those found in immortalized adipogenic models. We found a plausible SIRT1-related transcriptional signature during brown adipocyte differentiation that may contribute to silencing the myogenic signature. In contrast to brown preadipocytes or skeletal muscle cells, white preadipocytes express Tcf21, a transcription factor that has been shown to suppress myogenesis and nuclear receptor activity. In addition, we identified a number of developmental genes that are differentially expressed between brown and white preadipocytes and that have recently been implicated in human obesity. The interlinkage between the myocyte and the brown preadipocyte confirms the distinct origin for brown versus white adipose tissue and also represents a plausible explanation as to why brown adipocytes ultimately specialize in lipid catabolism rather than storage, much like oxidative skeletal muscle tissue.

Publication Title

Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP149974
RNAseq data of brain cortex from mice at d10 post-microglia depletion and non-depleted controls
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Previous studies have reported that microglia depletion leads to impairment of synapse formation and these cells rapidly repopulate from CNS progenitors. However, the impact of microglia depletion and repopulation on the long-term state of the CNS environment has not been characterized. Here, we found by RNA-seq analysis that acute and synchronous microglia depletion results in a type 1-interferon inflammatory signature in degenerating somatosensory cortex in microglia-depleted mice. Transcriptomic and mass cytometry analysis of repopulated microglia demonstrates an interferon regulatory factor 7-driven activation state. Minocycline and anti-IFNAR1 antibody treatment attenuate the CNS type-1 interferon-driven inflammation and restore microglia homeostasis. Together, we found that acute microglia ablation induces a type-1 interferon activation state of grey matter microglia associated with acute neurodegeneration. Overall design: RNAseq analysis of brain cortical tissue from control and microglia-depleted mice.

Publication Title

Acute microglia ablation induces neurodegeneration in the somatosensory system.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE81984
Transcriptome analysis of periodontitis-associated fibroblasts by CAGE sequencing identified DLX5 and RUNX2 long variant as novel regulators involved in periodontitis
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptome analysis of periodontitis-associated fibroblasts by CAGE sequencing identified DLX5 and RUNX2 long variant as novel regulators involved in periodontitis

Publication Title

Transcriptome analysis of periodontitis-associated fibroblasts by CAGE sequencing identified DLX5 and RUNX2 long variant as novel regulators involved in periodontitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE81870
Transcriptome analysis of periodontitis-associated fibroblasts by CAGE sequencing identified DLX5 and RUNX2 long variant as novel regulators involved in periodontitis.
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptome analyses of normal gingival fibroblasts after knockdown of DLX5 and RUNX2 long forms.

Publication Title

Transcriptome analysis of periodontitis-associated fibroblasts by CAGE sequencing identified DLX5 and RUNX2 long variant as novel regulators involved in periodontitis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact