BALB/c mice are susceptible to proteoglycan (PG) aggrecan-induced arthritis (PGIA), a murine model of rheumatoid arthritis (Glant,T.T. and Mikecz,K., Proteoglycan aggrecan-induced arthritis. A murine autoimmune model of rheumatoid arthritis. Methods Mol.Med. 2004. 102: 313-338.). However, there are marked differences among BALB/c colonies (maintained by different vendors at different locations) in PGIA onset and severity, which could be the result of subtle variations in their genetic background.
BALB/c mice genetically susceptible to proteoglycan-induced arthritis and spondylitis show colony-dependent differences in disease penetrance.
Sex
View SamplesEstrogens and progesterone control mammary gland development and breast carcinogenesis via their cognate receptors expressed in a subset of cells of the luminal layer of the mammary epithelium. The extracellular matrix (ECM) including the basement membrane (BM) is important in breast physiology and tumorigenesis but how epithelial hormone receptor signaling and ECM are linked mechanistically is unclear. We identify the secreted protease Adamts18 as critical intermediary. Luminal estrogen and progesterone receptor signaling via upregulation of Wnt4 expression and ensuing canonical Wnt signaling activation in basal cells control Adamts18 expression there. The protease has an epithelial-intrinsic role in stem cell activation. We identify multiple binding partners in the interstitial ECM and BM and show that ADAMTS18 cleaves fibronectin in vitro. Its deletion results in increased fibronectin, collagen I and IV, and laminin deposition in pubertal glands. Adamts18 interacts genetically with Col18a1, which encodes a proteoglycan that is BM-specific, in stem cell regulation. Adamts18 inactivation impairs Hippo signaling and reduces Fgfr2 expression and signaling, which are vital for stem cell function. Our findings link epithelial hormone signaling to BM remodeling by Adamts18, and define the BM as an essential stem cell niche component.
The secreted protease Adamts18 links hormone action to activation of the mammary stem cell niche.
No sample metadata fields
View SamplesSenescence of stromal fibroblasts has been linked to establishment of cancer associated fibroblasts (CAF) and aging-associated increase of tumors. However, in clinically occurring carcinomas, density and proliferation of CAFs are frequently increased rather than decreased. We previously showed that genetic deletion or down-modulation of the canonical Notch effector CSL/RBP-J? in skin dermal fibroblasts is sufficient for CAF activation with consequent development of multifocal keratinocyte tumors. We now show that CSL deletion or knockdown induces senescence of primary fibroblasts derived from dermis, oral mucosa, breast and lung. CSL functions in these cells as a constitutive direct repressor of multiple senescence- and CAF-effector genes. At the same time, it physically interacts with p53, repressing its activity, and p53 activation provides a failsafe mechanism against compromised CSL function. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effector genes and, in vivo, promotes tumour and stromal cell expansion. Together, the findings support a CAF activation/stromal evolution model under convergent CSL/p53 control. Overall design: Human Dermal Fibroblasts were transfected with two different siRNA against CSL in parallel with a control siRNA. Total RNA was extracted 3 days post-transfection, followed by RNA-Seq analysis.
Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation.
No sample metadata fields
View SamplesSenescence of stromal fibroblasts has been linked to establishment of cancer associated fibroblasts (CAF) and aging-associated increase of tumors. However, in clinically occurring carcinomas, density and proliferation of CAFs are frequently increased rather than decreased. We previously showed that genetic deletion or down-modulation of the canonical Notch effector CSL/RBP-J-kappa in skin dermal fibroblasts is sufficient for CAF activation with consequent development of multifocal keratinocyte tumors. We now show that CSL deletion or knockdown induces senescence of primary fibroblasts derived from dermis, oral mucosa, breast and lung. CSL functions in these cells as a constitutive direct repressor of multiple senescence- and CAF-effector genes. At the same time, it physically interacts with p53, repressing its activity, with p53 activation providing a failsafe mechanism against compromised CSL function. Concomitant loss of CSL and p53 overcomes fibroblasts senescence, enhances CAF effector gene expression and, in vivo, promotes stromal and cancer cell expansion. Together, these findings support a CAF activation/stromal evolution model under convergent CSL/p53 control.
Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation.
Specimen part
View SamplesNitrogen mustard (NM) is a vesicant known to target the lung, causing acute injury which progresses to fibrosis. Evidence suggests that activated macrophages contribute to the pathologic response to NM. In these studies, we analyzed the role of lung lipids generated following NM exposure on macrophage activation and phenotype. Treatment of rats with NM (0.125 mg/kg, i.t.) resulted in a time-related increase in enlarged vacuolated macrophages in the lung. At 28 d post exposure, macrophages stained positively for Oil Red O, a marker of neutral lipids. This was correlated with an accumulation of oxidized phospholipids in lung macrophages and epithelial cells, and an increase in bronchoalveolar lavage fluid (BAL) phospholipids. RNA-sequencing analysis revealed that lipid handling pathways under control of the transcription factors LXR, FXR and PPAR-? were significantly altered following NM exposure. Whereas at 1-3 d post NM, FXR and the downstream oxidized low density lipoprotein receptor, Cd36, were increased, Lxr and the lipid extrusion pump targets, Abca1 and Abcg1 were reduced. Treatment of naïve lung macrophages with lipid enriched fractions of BAL collected 3 d after NM resulted in upregulation of Nos2, Apoe and Ptgs2, markers of pro-inflammatory activation, while lipid-enriched BAL collected 28 d post NM upregulated expression of the anti-inflammatory markers, Il10, Cd163, and Cx3cr1, and induced the formation of lipid-laden foamy macrophages. These data suggest that NM-induced alterations in lipid handling and metabolism drive macrophage foam cell formation, potentially contributing to the development of pulmonary fibrosis. Overall design: Alveolar macrophages were collected by gentile message from male wistar rats 1 d or 28 d after intratracheal exposure to NM and from rats intratracheally exposed to PBS. There were three biological replicates per exposure group.
Regulation of Macrophage Foam Cell Formation During Nitrogen Mustard (NM)-Induced Pulmonary Fibrosis by Lung Lipids.
Sex, Specimen part, Cell line, Subject
View SamplesPurpose: The goals of this study were to identify preferential gene expression signatures that are unique to Tregs in neonatal skin relative to peripheral Tregs Methods: Tregs from telogen skin and SDLNs were purified by cell sorting (using the Treg GFP reporter mouse line Foxp3-DTR/GFP) to generate mRNA transcription profiles. Results: Transcriptional profiling revealed a unique neonatal skin Treg signature relative to SDLN Tregs Conclusion: Our study represents the first detailed analysis of the neonatal skin Treg transcriptome. Overall design: mRNA profiles of skin and SDLN Tregs isolated from 13 day old Foxp3-DTR/GFP mice.
Commensal Microbes and Hair Follicle Morphogenesis Coordinately Drive Treg Migration into Neonatal Skin.
Age, Specimen part, Cell line, Subject
View SamplesRNA prepared from specialized replum cells within siliques provided targets for profiling the Arabidopsis genome during replum cell development.
Laser capture microdissection of plant cells from tape-transferred paraffin sections promotes recovery of structurally intact RNA for global gene profiling.
Specimen part
View SamplesRett syndrome (RTT) is an X-linked dominant neurodevelopmental disorder caused by mutations in MECP2, encoding methyl-CpG binding protein 2. MeCP2 is a transcriptional repressor elevated in mature neurons and is predicted to be required for neuronal maturation by regulating multiple target genes. Identifying primary gene targets in either Mecp2-deficient mice or human RTT brain has proven to be difficult, perhaps because of the transient requirement for MeCP2 during neuronal maturation. In order to experimentally control the timing of MeCP2 expression and deficiency during neuronal maturation, human SH-SY5Y cells undergoing mature neuronal differentiation were transfected with methylated MeCP2 oligonucleotide decoy to disrupt the binding of MeCP2 to endogenous targets. Genome-wide expression microarray analysis identified all four known members of the inhibitors of differentiation or inhibitors of DNA binding (ID1, ID2, ID3 and ID4) subfamily of helix-loop-helix (HLH) genes as novel neuronal targets of MeCP2. Chromatin immunoprecipitation analysis confirmed binding of MeCP2 near or within the promoters of ID1, ID2 and ID3, and quantitative RT-PCR confirmed increased expression of all four Id genes in Mecp2-deficient mouse brain. All four ID proteins were significantly increased in Mecp2-deficient mouse and human RTT brain using immunofluorescence and laser scanning cytometric analyses. Because of their involvement in cell differentiation and neural development, ID genes are ideal primary targets for MeCP2 regulation of neuronal maturation that may explain the molecular pathogenesis of RTT.
Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome.
No sample metadata fields
View SamplesWe have applied a new software to analyse a human naive single-chain antibody (scFv) library, comprehensively revealing the diversity of antibody variable complementarity-determining regions (CDRs) and their families.
A novel DNAseq program for enhanced analysis of Illumina GAII data: a case study on antibody complementarity-determining regions.
No sample metadata fields
View SamplesThe zinc finger transcription factor growth-factor-independent-1 (Gfi1) has been involved in various cellular differentiation processes. Gfi1 acts as a transcriptional repressor and splicing control factor upon binding to cognate binding sites in regulatory elements of its target genes. Here, we report that Gfi1-deficient mice develop autoimmunity. Gfi1-deficient peripheral B-cells show a hyperproliferative phenotype, leading to expansion of plasma cells, increased levels of nuclear autoantibodies, and immunoglobulin deposition in brain and kidneys. Dysregulation of multiple transcription factors and cell-cycle control elements may contribute to B-cell dependent autoimmunity. Gfi1 thus emerges as a novel master-regulator restricting autoimmunity.
Transcription factor Gfi1 restricts B cell-mediated autoimmunity.
Specimen part
View Samples