The dual bromodomain protein Brd2 is closely related to the basal transcription factor TAFII250, which is essential for cyclin A transactivation and mammalian cell cycle progression. In transgenic mice, constitutive lymphoid expression of Brd2 causes a malignancy most similar to human diffuse large B cell lymphoma. We compare the genome-wide transcriptional expression profiles of these lymphomas with those of proliferating and resting normal B cells. Transgenic tumors reproducibly show differential expression of a large number of genes important for cell cycle control and lymphocyte biology; expression patterns are either tumor-specific or proliferation-specific. Several of their human orthologs have been implicated in human lymphomagenesis. Others correlate with human disease survival time. BRD2 is underexpressed in some subtypes of human lymphoma and these subtypes display a number of similarities to the BRD2-mediated murine tumors. We illustrate with a high degree of detail that cancer is more than rampant cellular proliferation, but involves the additional transcriptional mobilization of many genes, some of them poorly characterized, which show a tumor-specific pattern of gene expression.
Tumor-specific and proliferation-specific gene expression typifies murine transgenic B cell lymphomagenesis.
Specimen part
View SamplesRNA was obtained from histologically normal bronchial epithelium of never, former, and current smokers undergoing fiberoptic bronchoscopy.
Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression.
Age
View SamplesEach total RNA sample is hybridized to two different arrays: Affymetrix U133A (GPL96) and U133B (GPL97).
Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data.
No sample metadata fields
View SamplesTo identify genes expressed during initiation of lung organogenesis, we generated transcriptional profiles of the prospective lung region of the mouse foregut (mid-foregut) microdissected from embryos at three developmental stages between embryonic day 8.5 (E8.5) and E9.5. This period spans from lung specification of foregut cells to the emergence of the primary lung buds. We identified a number of known and novel genes that are temporally regulated as the lung bud forms. Genes that regulate transcription, including DNA binding factors, co-factors, and chromatin remodeling genes, are the main functional groups that change during lung bud formation. Members of key developmental transcription and growth factor families, not previously described to participate in lung organogenesis, are expressed in the mid-foregut during lung bud induction. These studies also show early expression in the mid-foregut of genes that participate in later stages of lung development. This characterization of the mid-foregut transcriptome provides new insights into molecular events leading to lung organogenesis.
Characterization of the mid-foregut transcriptome identifies genes regulated during lung bud induction.
No sample metadata fields
View SamplesPharmacogenomic identification of targets for adjuvant therapy with the topoisomerase poison camptothecin.
Pharmacogenomic identification of targets for adjuvant therapy with the topoisomerase poison camptothecin.
No sample metadata fields
View SamplesInherent depot- and age-dependent preadipocyte characteristics may contribute to age-related fat redistribution. Both aging and depot origin affect preadipocyte replication and adipogenesis. To define responsible mechanisms, we analyzed genome-wide expression profiles in epididymal (E) and perirenal (P) preadipocytes cultured from young (3 month) and old (30m) rats. Differences between depots were distinct from and more dramatic than those that occur with aging.
Aging, depot origin, and preadipocyte gene expression.
Sex
View SamplesUsing primary human bronchial epithelial cells collected at bronchoscopy, we have perturbed signaling pathways important in regulation of response to tobacco smoke exposure and cancer development: ATM, BCL2, GPX1, NOS2, IKBKB, and SIRT1
SIRT1 pathway dysregulation in the smoke-exposed airway epithelium and lung tumor tissue.
Specimen part
View SamplesCK1-alpha-LS was knocked down in human coronary artery smooth muscle cells. Gene level and exon level changes in expression were assessed.
Protein kinase CK1alphaLS promotes vascular cell proliferation and intimal hyperplasia.
Specimen part
View SamplesIn this study, we took advantage of a previously established breast cancer progression cell line model system, which consists of a parental MCF10A (MI) spontaneously immortalized mammary epithelial cell line and two of its derivatives: 1) MCF10ATk.cl2 (MII), a MCF10A H-Ras transformed cell line and 3) MCF10CA1h (MIII), derived from a xenograft of the MII cells in nude mice that progressed to carcinoma (1, 2). These cell lines were previously reported to exhibit distinct tumorigenic properties when re-implanted in nude mice; MI is non-tumorigenic, MII forms benign hyperplastic lesions and MIII forms low-grade, well differentiated carcinomas (2, 3). The advantage of this system is that these cell lines were derived from a common genetic background (MCF10A) and accumulated distinct genetic/epigenetic alterations in vivo enabling them to acquire a range of non-tumorigenic to carcinogenic properties. Our initial studies showed that MIII cells, but not MI or MII, exhibit an EMT phenotype, promoter DNA hypermethylation of epithelial genes and highly invasive properties in vitro.
Smad signaling is required to maintain epigenetic silencing during breast cancer progression.
Cell line
View SamplesComparison of gene and protein expression in the large airway epithelium of never and current smokers.
Comparison of proteomic and transcriptomic profiles in the bronchial airway epithelium of current and never smokers.
Sex, Age, Specimen part, Race, Subject
View Samples