refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 244 results
Sort by

Filters

Technology

Platform

accession-icon GSE71621
Cell type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Epithelial to mesenchymal transition (EMT) in cancer cells has been associated with metastasis, stemness and resistance to therapy. The reason why some tumors undergo EMT and other not might reflect intrinsic properties of their cell of origin, although this possibility is largely unexplored. By targeting the same oncogenic mutations to discrete skin compartments, we show cell type-specific chromatin and transcriptional states differentially prime tumors to EMT. Squamous cell carcinomas (SCCs) derived from intrafollicular epidermis (IFE) are generally well-differentiated, while hair follicle (HF) stem cell-derived SCCs frequently exhibit EMT, efficiently form secondary tumors, and possess increased metastatic potential. Transcriptional and epigenomic profiling revealed IFE and HF tumor-initiating cells possess distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT that correlate with accessibility of key epithelial and EMT transcription factor binding sites. These findings highlight the importance of chromatin states and transcriptional priming in dictating tumor phenotypes and EMT.

Publication Title

Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE87877
Cell type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition [expression 1]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Epithelial to mesenchymal transition (EMT) in cancer cells has been associated with metastasis, stemness and resistance to therapy. The reason why some tumors undergo EMT and other not might reflect intrinsic properties of their cell of origin, although this possibility is largely unexplored. By targeting the same oncogenic mutations to discrete skin compartments, we show cell type-specific chromatin and transcriptional states differentially prime tumors to EMT. Squamous cell carcinomas (SCCs) derived from intrafollicular epidermis (IFE) are generally well-differentiated, while hair follicle (HF) stem cell-derived SCCs frequently exhibit EMT, efficiently form secondary tumors, and possess increased metastatic potential. Transcriptional and epigenomic profiling revealed IFE and HF tumor-initiating cells possess distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT that correlate with accessibility of key epithelial and EMT transcription factor binding sites. These findings highlight the importance of chromatin states and transcriptional priming in dictating tumor phenotypes and EMT.

Publication Title

Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE55738
Expression data from chemically-induced skin papillomas (benign tumours)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cancer stem cells (CSCs) have been reported in various cancers including skin squamous cell carcinoma (SCC). The molecular mechanisms regulating tumour initiation and stemness are still poorly characterized. Here, we found that Sox2, a transcription factor expressed in various types of embryonic and adult stem cells (SCs), was the most upregulated transcription factor in CSCs of squamous skin tumours. Sox2 is absent in normal epidermis and begins to be expressed in the vast majority of mouse and human pre-neoplastic skin tumours and continues to be expressed in a heterogeneous manner in invasive mouse and human SCCs. In contrast to other SCCs, in which Sox2 is frequently genetically amplified, the expression of Sox2 in mouse and human skin SCCs is transcriptionally regulated. Conditional deletion of Sox2 in the mouse epidermis dramatically decreases skin tumour formation following chemical induced carcinogenesis. Using Sox2-GFP knockin mice, we showed that Sox2 expressing cells in invasive SCC are greatly enriched in tumour propagating cells (TPCs) that further increase upon serial transplantations. Lineage ablation of Sox2 expressing cells within primary benign and malignant SCCs leads to tumour regression, consistent with the critical role of Sox2 expressing cells in tumour maintenance. Conditional Sox2 deletion in pre-existing skin papilloma and SCC leads to their regression and decreases their ability to be propagated upon transplantation into immunodeficient mice, supporting the essential role of Sox2 in regulating CSC functions. Transcriptional profiling of Sox2-GFP expressing CSC and upon Sox2 deletion uncovered a gene network regulated by Sox2 in primary tumour cells in vivo. Chromatin immunoprecipitation identified several direct Sox2 target genes controlling tumour stemness, survival, proliferation, adhesion, invasion, and paraneoplastic syndrome. Altogether, our study demonstrates that Sox2, by marking and regulating the functions of skin tumour initiating cells and CSCs, establishes a continuum between tumour initiation and progression in primary skin tumours.

Publication Title

SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE55737
Expression data from chemically-induced skin squamous cell carcinomas
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cancer stem cells (CSCs) have been reported in various cancers including skin squamous cell carcinoma (SCC). The molecular mechanisms regulating tumour initiation and stemness are still poorly characterized. Here, we found that Sox2, a transcription factor expressed in various types of embryonic and adult stem cells (SCs), was the most upregulated transcription factor in CSCs of squamous skin tumours. Sox2 is absent in normal epidermis and begins to be expressed in the vast majority of mouse and human pre-neoplastic skin tumours and continues to be expressed in a heterogeneous manner in invasive mouse and human SCCs. In contrast to other SCCs, in which Sox2 is frequently genetically amplified, the expression of Sox2 in mouse and human skin SCCs is transcriptionally regulated. Conditional deletion of Sox2 in the mouse epidermis dramatically decreases skin tumour formation following chemical induced carcinogenesis. Using Sox2-GFP knockin mice, we showed that Sox2 expressing cells in invasive SCC are greatly enriched in tumour propagating cells (TPCs) that further increase upon serial transplantations. Lineage ablation of Sox2 expressing cells within primary benign and malignant SCCs leads to tumour regression, consistent with the critical role of Sox2 expressing cells in tumour maintenance. Conditional Sox2 deletion in pre-existing skin papilloma and SCC leads to their regression and decreases their ability to be propagated upon transplantation into immunodeficient mice, supporting the essential role of Sox2 in regulating CSC functions. Transcriptional profiling of Sox2-GFP expressing CSC and upon Sox2 deletion uncovered a gene network regulated by Sox2 in primary tumour cells in vivo. Chromatin immunoprecipitation identified several direct Sox2 target genes controlling tumour stemness, survival, proliferation, adhesion, invasion, and paraneoplastic syndrome. Altogether, our study demonstrates that Sox2, by marking and regulating the functions of skin tumour initiating cells and CSCs, establishes a continuum between tumour initiation and progression in primary skin tumours.

Publication Title

SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2421
IFNgamma and 1a,25(OH)2D3 dependent gene expression in bone marrow derived macrophages
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Gene expression profiling of macrophages derived from WT and Vdr deficient mice after stimulation with IFNgamma and/or 1alpha,25(OH)2D3

Publication Title

1alpha,25-Dihydroxyvitamin D3 is a potent suppressor of interferon gamma-mediated macrophage activation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37741
Effects of knockdown of Jmjd6 on human umbilical vein endothelial cells - gene and exon expression
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Human umbilical vein endothelial cells (HUVECs) were incubated for 48 h after transfection of scrambled siRNA or siRNA targeting Jmjd6 .

Publication Title

Jumonji domain-containing protein 6 (Jmjd6) is required for angiogenic sprouting and regulates splicing of VEGF-receptor 1.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE140882
Targeting chronic NFAT activation with calcineurin inhibitors in diffuse large B-cell lymphoma
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Diffuse large B-cell lymphoma (DLBCL) represents the most common form of lymphoma. We could show that in DLBCL cell lines the transcription factor NFAT is constitutively activated and drives the survival of a DLBCL subset. Aim of the analysis was to identify NFAT target genes in a NFAT-dependent (HBL-1) or -independent (HT) DLBCL cell line. To block NFAT activity, the DLBCL cells were treated with the calcineurin inhibitor cyclosporin A (CsA) up to 48 h. With this approach, we identified several survival-related NFAT target genes in HBL-1 cells that might explain the toxic effects of calcineurin inhibitors.

Publication Title

Targeting chronic NFAT activation with calcineurin inhibitors in diffuse large B-cell lymphoma.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP062369
Genome-wide expression analysis of yeast with CRISPR-mediated inhibition of GAL10 ncRNA compared to wild-type.
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 49 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We analyzed the genome-wide expression by RNA-seq of a yeast strain that expresses Cas9d and a guideRNA targeted to the GAL10 locus (called +116), which inhibits GAL10 ncRNA expression from the antisense strand. We compared this strain to a strain expressing a scrambled guideRNA. The goal was to examine the effects of ncRNA inhibition and to examine if CRISPR inhibition of gene expression has off-target effects. We find that CRISPR-mediated inhibtion of GAL10 ncRNA only significantly changes expression of transcripts at the GAL1-10 locus, showing that CRISPR is highly specific, and that GAL10 ncRNA only control genes at the GAL locus. Overall design: RNA-seq of 2 strains with CRISPR scrambled and 2 strains with CRISPR +116, the latter of which inhibits GAL10 ncRNA

Publication Title

Single-Molecule Imaging Reveals a Switch between Spurious and Functional ncRNA Transcription.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE21033
Timecourse analysis of gene expression by murine bone marrow-generated dendritic cells following treatment with Poly I:C
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

BACKGROUND: Dendritic cells (DC) play a central role in primary immune responses and become potent stimulators of the adaptive immune response after undergoing the critical process of maturation. Understanding the dynamics of DC maturation would provide key insights into this important process. Time course microarray experiments can provide unique insights into DC maturation dynamics. Replicate experiments are necessary to address the issues of experimental and biological variability. Statistical methods and averaging are often used to identify significant signals. Here a novel strategy for filtering of replicate time course microarray data, which identifies consistent signals between the replicates, is presented and applied to a DC time course microarray experiment.

Publication Title

Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37000
The transcriptional landscape of hematopoietic stem cell ontogeny
  • organism-icon Mus musculus
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptome analysis of adult hematopoietic stem cells (HSC) and their progeny has informed our understanding of blood differentiation and leukemogenesis, but a similarly transformative analysis of the embryonic origins of hematopoiesis is lacking. To address this issue, we acquired gene expression profiles of developing HSC purified from over 2500 dissected murine embryos and adult mice, and applied a network biology-based analysis to reconstruct the gene regulatory networks of sequential stages of HSC development. We found that embryonic hematopoietic elements clustered into three distinct transcriptional states characteristic of the definitive yolk sac, HSCs emerging from hemogenic endothelium, and definitive HSCs. We functionally validated several candidate transcriptional regulators of HSC ontogeny by morpholino-mediated knock-down in zebrafish embryos, confirming changes in the expression of HSC markers runx1 and c-myb in the aorta-gonads-mesonephros (AGM), the site of definitive HSC specification. Moreover, we found that HSCs derived from differentiating embryonic stem cells in vitro (ESC-HSC) most closely resemble definitive HSC, yet lack a signature indicative of specification by Notch signaling, which likely accounts for their deficient lymphoid development. Our analysis and accompanying web resource will accelerate the characterization of regulators of HSC ontogeny, facilitate efforts to direct hematopoietic differentiation and cell fate conversion, and serve as a model to study the origins of other adult stem cells.

Publication Title

The transcriptional landscape of hematopoietic stem cell ontogeny.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact