The biopsy samples obtained at implantation segregated in 2 distinct groups according to donor origin, with a cluster of 319 unique identified genes higher expressed in DD compared to LD kidneys, and 329 genes lower expressed (false discovery rate <5%). Using pathway analysis software a significant local renal overrepresentation of complement genes in DD implantation biopsies was identified. Complement gene expression in DD kidneys related both to donor death and cold ischemia duration, and was associated with a slower onset of renal allograft function. In post-transplantation protocol biopsies, there was a continued overexpression of complement genes, regardless of donor source. The local renal complement gene expression variability in post-transplantation biopsies correlated with renal graft function.
Expression of complement components differs between kidney allografts from living and deceased donors.
No sample metadata fields
View Samplesmmunosuppressive drugs can be completely withdrawn in up to 20% of liver transplant recipients, commonly referred to as operationally tolerant. Immune characterization of these patients, however, has not been performed in detail, and we lack tests capable of identifying tolerant patients among recipients receiving maintenance immunosuppression. In the current study we have analyzed a variety of biological traits in peripheral blood of operationally tolerant liver recipients in an attempt to define a multiparameter fingerprint of tolerance. Thus, we have performed peripheral blood gene expression profiling and extensive blood cell immunophenotyping on 16 operationally tolerant liver recipients, 16 recipients requiring on-going immunosuppressive therapy, and 10 healthy individuals. Microarray profiling identified a gene expression signature that could discriminate tolerant recipients from immunosuppression-dependent patients with high accuracy. This signature included genes encoding for ?d T-cell and NK receptors, and for proteins involved in cell proliferation arrest. In addition, tolerant recipients exhibited significantly greater numbers of circulating potentially regulatory T-cell subsets (CD4+CD25+ T-cells and Vd1+ T cells) than either non-tolerant patients or healthy individuals. Our data provide novel mechanistic insight on liver allograft operational tolerance, and constitute a first step in the search for a non-invasive diagnostic signature capable of predicting tolerance before undergoing drug weaning.
Multiparameter immune profiling of operational tolerance in liver transplantation.
No sample metadata fields
View SamplesMiR-221 overexpression leads to activation of apoptosis, growth arrest and reduced invasivness in PCa cells. Interaction of miR-221 with potential target genes was analyzed by a genome wide expression profiling.. Regulation of selected genes and proteins identified in the gene array analysis was confirmed by Real Time RT-PCR assay (IRF1, IRF2 SOCS3, STAT1), and Western Blotting. In total, 282 genes were upregulated and 64 downregulated based on a more than 2-fold difference to untransfected PC-3 cells. Regulated genes are involved in apoptosis, hemostasis, oxidative stress response, tumorigenesis and inflammation. We confirmed dysregulation of IRF-2 SOCS3, STAT1,IRF9. These results indicate that miR-221 overexpression might lead to activation of the JAK/STAT pathway and downregulation of miR-221 might contribute to tumorigenesis in PCa cells.
Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3.
Cell line
View SamplesGlobal transcriptome patterns were performed using ORE1-IOE-2h (2h after Estradiol and Mock treatment) as well as transiently (6h) overexpressed Arabidopsis mesophyll cell protoplasts
NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis.
Specimen part, Treatment
View SamplesSchimke immuno-osseous dysplasia (SIOD) is a multisystemic disorder caused by biallelic mutations in SWI/SNF-related matrix associated actin-dependent regulator of chromatin, subfamily A-like protein 1 (SMARCAL1). Changes in gene expression appear to underlie the immunodeficiency and arteriosclerosis of SIOD; therefore, we hypothesized that SMARCAL1 deficiency alters renal gene expression to cause the focal segmental glomerulosclerosis (FSGS) of SIOD, and that these gene expression alterations would be comparable to those observed in isolated FSGS. We tested this hypothesis by gene expression microarray analysis.
Increased Wnt and Notch signaling: a clue to the renal disease in Schimke immuno-osseous dysplasia?
Sex
View SamplesSchimke immuno-osseous dysplasia (SIOD) is a multisystemic disorder caused by biallelic mutations in SWI/SNF-related matrix associated actin-dependent regulator of chromatin, subfamily A-like protein 1 (SMARCAL1). Changes in gene expression appear to underlie the immunodeficiency and arteriosclerosis of SIOD; therefore, we hypothesized that SMARCAL1 deficiency alters renal gene expression to cause the focal segmental glomerulosclerosis (FSGS) of SIOD. We tested this hypothesis by transcriptome analysis and quantitative reverse transcription PCR (qRT-PCR) of an SIOD patient kidney, a genetic screen and immunofluorescence. These showed increased expression of genes in the Wnt and Notch signaling pathways in an SIOD patient kidney, interaction of Marcal1 with genes encoding components of the Wnt and Notch signaling pathways, and increased levels of unphosphorylated b-catenin and Notch1 intracellular domain (NICD) in the glomeruli of SIOD patient kidneys. Given that increased Wnt and Notch activity are established causes of FSGS, we hypothesize that SMARCAL1 deficiency increases the activity of one or both of these pathways to cause the renal disease of most SIOD patients. Overall design: Comparison of mRNA levels between the kidney tissue of a Schimke immuno-osseous dysplasia (SIOD) patient and an unaffected control
Increased Wnt and Notch signaling: a clue to the renal disease in Schimke immuno-osseous dysplasia?
No sample metadata fields
View SamplesRenal artery stenosis (RAS) caused by narrowing of arteries is characterized by microvascular damage. Macrophages are implicated in repair and injury, but the specific populations responsible for these divergent roles have not been identified. Here, we characterized murine kidney F4/80+CD64+ macrophages in three transcriptionally unique populations. Using fate-mapping and parabiosis studies, we demonstrate that CD11b/cint are long-lived kidney-resident (KRM) while CD11chiMf, CD11cloMf are monocyte-derived macrophages. In a murine model of RAS, KRM self-renewed, while CD11chiMf and CD11cloMf increased significantly, which was associated with loss of peritubular capillaries. Replacing the native KRM with monocyte-derived KRM using bone marrow transplantation followed by RAS, amplified loss of peritubular capillaries. To further elucidate the nature of interactions between KRM and peritubular endothelial cells, we performed RNA-sequencing on flow-sorted macrophages from Sham and RAS kidneys. KRM showed a prominent activation pattern in RAS with significant enrichment in reparative pathways, like angiogenesis and wound healing. In culture, KRM increased proliferation of renal peritubular endothelial cells implying direct pro-angiogenic properties. Human homologs of KRM identified as CD11bintCD11cintCD68+ increased in post-stenotic kidney biopsies from RAS patients compared to healthy human kidneys, and inversely correlated to kidney function. Thus, KRM may play protective roles in stenotic kidney injury through expansion and upregulation of pro-angiogenic pathways Overall design: CD11chiMf Sham, n=3; CD11chiMf RAS, n=4; CD11cloMf Sham, n=3; CD11cloMf RAS, n=4; KRM Sham, n=4; KRM RAS, n=3;
Kidney-resident macrophages promote a proangiogenic environment in the normal and chronically ischemic mouse kidney.
Sex, Age, Specimen part, Cell line, Subject
View SamplesPDE4 inhibitors, which activate cAMP signaling by reducing cAMP catabolism, are known to induce apoptosis in B lineage chronic lymphocytic leukemia (CLL) cells but not normal human T cells. The explanation for such differential sensitivity remains unknown. Here, we report studies contrasting the response to PDE4 inhibitor treatment in CLL cells and normal human T and B cells.
Chronic lymphocytic leukemia and B and T cells differ in their response to cyclic nucleotide phosphodiesterase inhibitors.
No sample metadata fields
View SamplesWe used microarrays to compare gene expression profilings in various SMARCB1-deficient tumors.
Embryonic signature distinguishes pediatric and adult rhabdoid tumors from other SMARCB1-deficient cancers.
Specimen part
View SamplesWe used microarrays to compared gene re-expression of SMARCB1 in I2A SMARCB1-deficient rhabdoid tumor cell line.
High-Throughput Drug Screening Identifies Pazopanib and Clofilium Tosylate as Promising Treatments for Malignant Rhabdoid Tumors.
Specimen part
View Samples