refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 377 results
Sort by

Filters

Technology

Platform

accession-icon SRP090189
Aire-KO MEChi RNAseq profiling
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2000

Description

Background: In order to become functionally competent but harmless mediators of the immune system, T cells undergo a strict educational program in the thymus, where they learn to discriminate between self and non-self. This educational program is, to a large extent, mediated by medullary thymic epithelial cells (mTECs) that have a unique capacity to express, and subsequently present a large fraction of body antigens. While the scope of promiscuously expressed genes by mTECs is well established, relatively little is known about the expression of variants that are generated by co- and post-transcriptional processes. Results: Our study reveals that in comparison to other cell types, mTECs display significantly higher levels of alternative splicing, as well as A-to-I and C-to-U RNA editing, which thereby further expand the diversity of their self-antigen repertoire. Interestingly, Aire, the key mediator of mTECs promiscuous gene expression, plays a limited role in the regulation of these transcriptional processes. Conclusions: Our results highlight RNA processing as another layer by which the immune system assures a comprehensive self-representation in the thymus which is required for the establishment of self-tolerance and prevention of autoimmunity. Identification of the number of genes expressed in Aire-KO MEChi Overall design: ~100ng of total RNA was isolated by Trizol extraction from MHC-II high mTECs from a pool of 3 Aire-KO mice. Poly-A-selected transcriptome libraries were generated using the non-directionnal TruSeq V3 RNA Sample Prep Kit (without additional pre-amplification) following the manufacturer''s protocols. Enrichment of DNA fragment with adapter molecules on both ends was done using 15 cycles of PCR amplification using the Illumina PCR mix and primer cocktail. Paired-end (2 × 100 bp) sequencing was performed using the Illumina HiSeq2000 machine.

Publication Title

Extensive RNA editing and splicing increase immune self-representation diversity in medullary thymic epithelial cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE50131
The transcription program of Runx3 in natural killer cells and CD8+ T cells
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Runx3-mediated transcriptional program in cytotoxic lymphocytes.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE50122
Runx3 function in splenic NK cells (IL-2 or IL-15)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

NK cells are innate immune cells that recognize and kill foreign, virally-infected and tumor cells without the need for prior immunization. NK expansion following viral infection is IL-2 or IL-15-dependent.

Publication Title

Runx3-mediated transcriptional program in cytotoxic lymphocytes.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE50123
Runx3 function in splenic NK cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

NK cells are innate immune cells that recognize and kill foreign, virally-infected and tumor cells without the need for prior immunization. NK expansion following viral infection is IL-2 or IL-15-dependent.

Publication Title

Runx3-mediated transcriptional program in cytotoxic lymphocytes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE50119
Runx3 function in CD8+ splenic T cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CD8+T cells are immune cells that recognize foreign antigens on infected and tumor cells, leading to cytokine-dependent expansion and activation of cytotoxicity towards the targets.

Publication Title

Runx3-mediated transcriptional program in cytotoxic lymphocytes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE50121
Runx3 function in IL-2-activated splenic CD8+ T cells.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CD8+T cells are immune cells that recognize foreign antigens on infected and tumor cells, leading to cytokine-dependent expansion and activation of cytotoxicity towards the targets.

Publication Title

Runx3-mediated transcriptional program in cytotoxic lymphocytes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE52625
Runx3 Regulates Interleukin-15-Dependent Natural Killer Cell Activation
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE50120
Runx3 function in splenic NK cells activated in vivo by IL-15.
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

NK cells are innate immune cells that recognize and kill foreign, virally-infected and tumor cells without the need for prior immunization. NK expansion following viral infection is IL-2 or IL-15-dependent.

Publication Title

Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE136067
Runx3 prevents spontaneous colitis by directing differentiation of anti-inflammatory mononuclear phagocytes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Runx3 prevents spontaneous colitis by directing the differentiation of anti-inflammatory mononuclear phagocytes.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE136066
Runx3 function in colon resident macrophages (RM) and CD11b+ dendritic cells (DC).
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

RUNX3 is one of three mammalian Runt-domain transcription factors that regulate gene expression in several types of immune cells. Runx3-deficiency in mice is associated with a multitude of defects in the adaptive and innate immunity systems, including the development of early onset colitis. Our study reveals that conditional deletion of Runx3 specifically in mononuclear phagocytes (MNP) recapitulates the early onset spontaneous colitis seen in Runx3-/- mice. We show that Runx3 is expressed in colonic MNP, including RM and the dendritic cell cDC2 subsets and its loss results in impaired differentiation/maturation of both cell types.

Publication Title

Runx3 prevents spontaneous colitis by directing the differentiation of anti-inflammatory mononuclear phagocytes.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact