refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon SRP041547
Illumina Sequencing data of the influence on gene expression of insulator protein co-factor dMes-4
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The Drosophila insulator-binding proteins (IBPs) dCTCF/Beaf32 mark the physical borders of chromosomal domains involving co-factors that participate in long-range interactions. Chromosomal borders are further enriched in specific histone modifications yet the implication of histone modifiers and nucleosome dynamics remains largely unknown in such context. Here, we show that IBP depletion impairs nucleosome dynamics over genes flanked by their binding sites. Biochemical purification identifies a key histone methyltransferase of H3K36, NSD/dMes-4, as a novel co-factor of IBPs involved in chromatin accessibility, which specifically co-regulates hundreds of genes flanked by Beaf32/dCTCF. dMes-4 presets chromatin before the recruitment of transcriptional activators including DREF that triggers Set2/Hypb-mediated H3K36me3, RNA splicing and nucleosome positioning. Our results unveil a model for how IBPs regulate gene expression and nucleosome dynamics through NSD/dMes-4, which may contribute to regulate H3K27me3 spreading. Together, our data suggest a division of labor for how IBPs may dynamically regulate chromatin organization depending on distinct co-factors. Overall design: mRNA profiles of Beaf32-depleted or Wild-Type control Drosophila S2 cells by RNASeq (Illumina)

Publication Title

Insulators recruit histone methyltransferase dMes4 to regulate chromatin of flanking genes.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP062844
Gene expression profiling from cohesin knockdown cells obtained grown in methylcellulose
  • organism-icon Mus musculus
  • sample-icon 46 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We performed RNA-sequencing in c-Kit+ cells that were infected with retroviruses expressing shRNAs for Renilla, Rad21, Smc1a, Smc3 or Stag2. These cells were grown in methylcellulose (M3434) for either one passage (P1) or replated for five passages (P5). Overall design: RNA-sequencing control (Ren) and cohesin (Rad21, Smc1a, Smc3 and Stag2) knockdown cells.

Publication Title

Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP062845
Gene expression profiling of control cohesin knockdown LSK cells
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We performed RNA-sequencing in LSK cells (Lin(neg)/c-Kit(+)/Sca-1(+)) from shRNA mice carrying an shRNA for Renilla, Smc1a or Stag2. Overall design: RNA-sequencing control (Renilla) and cohesin (Smc1a and Stag2) knockdown cells.

Publication Title

Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE84286
Comparison of CLL and MCL primary cells obtained from a patient with MCL variant Richter syndrome
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Comparison of CLL and MCL primary cells obtained from a patient with MCL variant Richter syndrome

Publication Title

Mantle cell lymphoma-variant Richter syndrome: Detailed molecular-cytogenetic and backtracking analysis reveals slow evolution of a pre-MCL clone in parallel with CLL over several years.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE27306
IRE1-dependent transcriptome remodelling upon ER stress in human glioma cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We investigate the contribution of IRE1 signaling to the modulation of U87 glioma cells transcriptome upon various stresses. To this end, IRE1 control and IRE1 dominant negative expressing U87 glioma cells were subjected to environmental or chemical challenges and their transcriptome monitored using Affymetrix microarrays.

Publication Title

Posttranscriptional regulation of PER1 underlies the oncogenic function of IREα.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE107859
Transcriptomic analysis of glioblastoma cells bearing different IRE1a mutants
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Glioblastoma multiforme is the most lethal form of glioma with an overall survival at 5 years nearly null, which mainly results from acquired resistance to therapies. Large scale sequencing studies on human cancer biopsies defined IRE1alpha as the fifth most oncogenic mutated kinase in human cancer. IRE1alpha is a major component of the Unfolded Protein Response signaling and increasing evidence suggests that it is a central player in GBM development.

Publication Title

Dual IRE1 RNase functions dictate glioblastoma development.

Sample Metadata Fields

Specimen part, Cell line

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact