This SuperSeries is composed of the SubSeries listed below.
Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer.
Cell line
View SamplesAnalysis of AR-regulation of gene expression. The hypothesis tested in the present study was that AR influences the expression of genes that participate in important bioprocesses in prostate cancer cells, including cell cycle, DNA replication, recombination and repair. Results provide important information on AR-responsive genes that may be crucial to the cell survival and the progression of prostate cancer.
Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer.
Cell line
View SamplesAnalysis of c-Myb-regulation of gene expression. The hypothesis tested in the present study was that c-Myb influences the expression of specific sets of genes that are involved in cell cycle, DNA replication, recombination and repair. Results provide important information on c-Myb-responsive genes that may be crucial to the cell survival and the progression of prostate cancer.
Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer.
Cell line
View SamplesSp1 is a transcription factor able to regulate many genes through its DNA binding domain, containing three zinc fingers. We were interested in identifying target genes regulated by Sp1, with a special emphasis to those involved in proliferation and cancer. Our approach was to treat HeLa cells with a siRNA directed against Sp1 mRNA (siSp1) to decrease the expression of Sp1 and, in turn, the genes activated by this transcription factor. Sp1 siRNA treatment led to a great number of differentially expressed genes as determined by whole genome cDNA microarray analysis. Underexpressed genes were selected since they represent putative genes activated by Sp1. These underexpressed genes were classified in six Gene Onthology categories, namely proliferation and cancer, mRNA processing, lipidic metabolism, glucidic metabolism, transcription and translation. Putative Sp1 binding sites were found in the promoters of the selected genes using the MatchTM software. After literature mining, 11 genes were selected for further validation of their expression levels using RT-real time PCR. Underexpression was confirmed for the 11 genes plus Sp1 in HeLa cells after siSp1 treatment. Additionally, EMSA and chromatin immunoprecipitation assays were performed to test for binding between Sp1 and the promoters of these genes. We observed binding of Sp1 to the promoters of RAB20, FGF21, IHPK2, ARHGAP18, NPM3, SRSF7, CALM3, PGD and Sp1 itself. Finally, the mRNA levels of RAB20, FGF21 and IHPK2, three genes related with proliferation and cancer, were determined after overexpression of Sp1 in HeLa cells, to confirm their relationship with Sp1.
Identification of novel Sp1 targets involved in proliferation and cancer by functional genomics.
Specimen part, Cell line
View SamplesEpigenetic control of neural stem/progenitor cell fate is fundamental to achieve a fully brain architecture. Two intrinsic programs regulate neurogenesis, one by epigenetic-mediated gene transcription and another by cell cycle control. Whether and how these two are coordinated to determine temporally and spatially neural development remains unknown. Here we show that deletion of Trrap (Transcription translation associated protein), an essential cofactor for HAT (histone acetyltransferase), leads to severe brain atrophy due to a combination of cell death and a blockade of neuron production. Specifically, Trrap deletion forces differentiation of apical progenitor (AP) fate into basal progenitors (BP) and neurons thereby limiting the total neurogenic production. Despite Trrap’s general role in transcriptional regulation, a genome-wide transcriptome analysis of neuroprogenitors identified the cell cycle regulators that are specifically affected by Trrap deletion. Furthermore, E2F-dependent recruitment of HAT and transcription factors to the promoter of cell cycle regulators is impaired in Trrap-deleted neuroprogenitors. Consistent with these molecular changes, Trrap deletion lengthens particularly G1 and S phases in APs in vivo. Therefore, our study reveals an essential and a distinct function of Trrap-HAT in regulation of cell cycle progression that is required for proper determination of neuroprogenitor fate. Overall design: Determine gene transcriptions by comparing Trrap-deleted and wild type samples
Trrap-dependent histone acetylation specifically regulates cell-cycle gene transcription to control neural progenitor fate decisions.
Specimen part, Subject
View SamplesWe profiled the gene expression/splicing program of normal and hnRNP U-deficient mouse hearts by RNA-seq. Overall design: RNA-seq profiles of control and Hnrnpu mutant hearts at postnatal day 14. Hnrnpu mutant hearts were generated by breeding the Hnrnpu conditional knockout mice with Ckmm-Cre transgenic mice.
hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function.
No sample metadata fields
View SamplesAmyotrophic lateral sclerosis (ALS) is a fatal adult-onset neuromuscular disorder characterized by the selective degeneration of upper and lower motor neurons, progressive muscle wasting and paralysis. To define the full set of alterations in gene expression in skeletal muscle during the course of the disease, we performed high-density oligonucleotide microarray analysis of gene expression in hind limb skeletal muscles of sod1(G86R) mice, one of the existing transgenic models of ALS. To monitor denervation-dependent gene expression, we determined the effects of short-term acute denervation on the muscle transcriptome after sciatic nerve axotomy.
Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model.
Sex, Age, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesExpression of germ cell nuclear factor (GCNF, Nr6a1), an orphan member of the nuclear receptor gene family of transcription factors, during gastrulation and neurulation is critical for normal embryogenesis in mice. Gcnf represses the expression of the POU domain transcription factor Oct4 (Pou5f1) during mouse post-implantation development. Although Gcnf expression is not critical for the embryonic segregation of the germ cell lineage, we found that sexually dimorphic expression of Gcnf in germ cells correlates with the expression of pluripotency-associated genes, such as Oct4, Sox2, and Nanog, as well as the early meiotic marker gene Stra8. To elucidate the role of Gcnf during mouse germ cell differentiation, we generated an ex vivo Gcnf-knockdown model in combination with a regulated CreLox mutation of Gcnf. Lack of Gcnf impairs normal spermatogenesis and oogenesis in vivo, as well as the derivation of germ cells from embryonic stem cells (ESCs) in vitro. Inactivation of the Gcnf gene in vivo leads to loss of repression of Oct4 expression in both male and female gonads.
Germ cell nuclear factor regulates gametogenesis in developing gonads.
Specimen part
View SamplesCystatin D (CST5) is an inhibitor of several proteases of the cathepsin family that inhibits cell proliferation, migration and invasion of colon carcinoma cells. Some of these effects are unrelated to its antiprotease activity. Here, we use genome-wide expression microarrays to show that cystatin D regulates gene expression (including that of genes encoding transcription factors such as RUNX1, RUNX2, or MEF2C) in HCT116 cells.
Cystatin D locates in the nucleus at sites of active transcription and modulates gene and protein expression.
Specimen part, Cell line
View SamplesBackground: There is limited data on how different RSV genotypes and associated viral loads influence disease phenotypes. We characterized the genetic variability of RSV strains during five non-consecutive respiratory seasons, and evaluated the role of RSV subtypes, genotypes and viral loads on clinical disease severity.
Respiratory Syncytial Virus Genotypes, Host Immune Profiles, and Disease Severity in Young Children Hospitalized With Bronchiolitis.
Sex, Specimen part
View Samples