The experiment aims to identify mRNAs regulated in response to RelA
Role of CCL20 mediated immune cell recruitment in NF-κB mediated TRAIL resistance of pancreatic cancer.
Specimen part, Treatment
View SamplesTh17 cells are believed to be a critical cell population for driving autoimmune diseases. However, environmental factors that are directly related to the development of Th17 cells are largely unknown.
Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells.
Specimen part
View SamplesOct3/4, Sox2, Klf4, and c-Myc re-wire somatic cells to achieve induced pluripotency (iPS cells). However, subtle differences in reprogramming methodology may confound comparative studies of reprogramming-induced gene expression changes. We specifically focused on the design of polycistronic reprogramming constructs, which encode all four factors linked with 2A peptides. Notably, publically available cassettes were found to employ one of two Klf4 variants (Klf4S and Klf4L; GenBank Accession Nos: AAC52939.1 and AAC04892.1), differing only by nine N-terminal amino acids. In a polycistronic context, these two variants generated dissimilar protein stoichiometry, where Klf4L vectors produced more Klf4 protein than those encoding Klf4S.
KLF4 N-terminal variance modulates induced reprogramming to pluripotency.
Sex, Specimen part
View SamplesEffects of treatment with Nimodipine on N9 cells
Nimodipine fosters remyelination in a mouse model of multiple sclerosis and induces microglia-specific apoptosis.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Induced pluripotent mesenchymal stromal cell clones retain donor-derived differences in DNA methylation profiles.
Specimen part, Subject
View SamplesReprogramming of somatic cells into induced pluripotent stem cells (iPSC) is an epigenetic phenomenon. We have reprogrammed mesenchymal stromal cells (MSC) from human bone marrow by retrovirus-mediated overexpression of OCT-3/4, SOX2, c-MYC, and KLF4. This series summarizes gene expression profiles of eight iP-MSC clones derived from three different donors. These datasets were subsequently used for PluriTest analysis (Muller FJ, Schuldt B et al., Nat. Methods 2011; 8: 315-317) demonstrating that all iP-MSC clones were clearly associated with pluripotent cells.
Induced pluripotent mesenchymal stromal cell clones retain donor-derived differences in DNA methylation profiles.
Specimen part
View SamplesMicroarrays were used to examine the genome-wide expression in FIH null, VHL null and VHL/FIH double null MEFs.
The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism.
Specimen part
View SamplesIn mouse bone marrow, mesenchymal stem cells (MSC) has the potential to form osteocytes, adipocytes and cartilage. In the process of osteogenesis, MSCs differenetiate into stromal cells, such as CAR cells. Osteoblast is responsible for the formation of osteocytes and osteoblasts may be differentiated from a subset of CAR cells. Dmp1-Cre targeted CAR cells are thought to enrich for a osteoblast progenitor population.
Targeting of Mesenchymal Stromal Cells by Cre-Recombinase Transgenes Commonly Used to Target Osteoblast Lineage Cells.
Age, Specimen part
View SamplesMicroarray analysis was performed to examine potential differences in target gene expression of AE9a expressing low cells compared to AE9a expressing high cells. Potential contributing factors to AE9a induced leukemia were investigated.
Supraphysiologic levels of the AML1-ETO isoform AE9a are essential for transformation.
Specimen part
View SamplesSingle-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully re-capitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc, and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes . In addition, we observe a continuum of activation states, revealing a pseudo-temporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs,allowing for novel insights into neuronal activation patterns in vivo. Overall design: Examination of 1) 82 whole-cell (WC) dentate granule cells from a PTZ- or saline-treated mouse, and 2) 23 single-nuclei (SN) from dentate granule cells of a homecage (HC) mouse or 96 nuclei from a mouse exposed to a novel environment (NE)
Nuclear RNA-seq of single neurons reveals molecular signatures of activation.
Specimen part, Cell line, Treatment, Subject
View Samples