Airway epithelial cells and macrophages differ markedly in their responses to influenza A virus (IAV) infection. To investigate transcriptional responses underlying these differences, purified subsets of type II airway epithelial cells (ATII) and alveolar macrophages (AM) recovered from the lungs of mock- or IAV-infected mice were subjected to RNA sequencing. In the absence of infection, AM predominantly expressed genes related to immunity whereas ATII expressed genes consistent with their physiological roles in the lung. Following IAV infection, AM almost exclusively activated cell-intrinsic antiviral pathways that were dependent on interferon regulatory factor (IRF)3/7 and/or type I interferon (IFN) signaling. In contrast, IAV-infected ATII activated a broader range of physiological responses, including cell-intrinsic antiviral pathways, which were both independent and dependent on IRF3/7 and/or type I IFN. These data suggest that transcriptional profiles hardwired during development could be a major determinant underlying the different responses of ATII and AM to IAV infection. Overall design: 96 samples were analyzed: (A) 4 replicates of HA+ Alveolar Macrophage (AM) and 4 replicates of CD103+ Dendritic cells (DC) isolated from the lung lobes of C57/BL6 mice on 9 h p.i. with PR8. 4 replicates of mock-infected (HA-) AM and 4 replicates of mock-infected (HA-) CD103+ DC isolated from the lung lobes of mock-infected C57/BL6 mice on 9 h p.i. with allantoic fluid of equal dilution as PR8. 4 replicates of HA+ Airway epithelial cell Type II (ATII) and 4 replicates of HA+ Ciliated Cell (CC) isolated from the lung lobes of C57/BL6 mice on 9 h p.i. with PR8. 4 replicates of mock-infected (HA-) ATII and 4 replicates of mock-infected (HA-) CC isolated from the lung lobes of mock-infected C57/BL6 mice on 9 h p.i. with allantoic fluid of equal dilution as PR8. (B) 4 replicates of HA+ AM and 4 replicates of CD103+ DC isolated from the lung lobes of IFNAR2-/- mice on 9 h p.i. with PR8. 4 replicates of mock-infected (HA-) AM and 4 replicates of mock-infected (HA-) CD103+ DC isolated from the lung lobes of mock-infected IFNAR2-/- mice on 9 h p.i. with allantoic fluid of equal dilution as PR8. 4 replicates of HA+ ATII and 4 replicates of HA+ CC isolated from the lung lobes of IFNAR2-/- mice on 9 h p.i. with PR8. 4 replicates of mock-infected (HA-) ATII and 4 replicates of mock-infected (HA-) CC isolated from the lung lobes of mock-infected IFNAR2-/- mice on 9 h p.i. with allantoic fluid of equal dilution as PR8. (C) 4 replicates of HA+ AM and 4 replicates of CD103+ DC isolated from the lung lobes of IRF3/7-/- mice on 9 h p.i. with PR8. 4 replicates of mock-infected (HA-) AM and 4 replicates of mock-infected (HA-) CD103+ DC isolated from the lung lobes of mock-infected IRF3/7-/- mice on 9 h p.i. with allantoic fluid of equal dilution as PR8. 4 replicates of HA+ ATII and 4 replicates of HA+ CC isolated from the lung lobes of IRF3/7-/- mice on 9 h p.i. with PR8. 4 replicates of mock-infected (HA-) ATII and 4 replicates of mock-infected (HA-) CC isolated from the lung lobes of mock-infected IRF3/7-/- mice on 9 h p.i. with allantoic fluid of equal dilution as PR8.
Unique Transcriptional Architecture in Airway Epithelial Cells and Macrophages Shapes Distinct Responses following Influenza Virus Infection <i>Ex Vivo</i>.
Specimen part, Subject
View SamplesThe main objective of this study is to identify the list of genes differentially expressed between infected with Leishmania braziliensis and non-infected macrophage cultures based on gene expression microarray profiling
Changes in Macrophage Gene Expression Associated with Leishmania (Viannia) braziliensis Infection.
Specimen part
View SamplesOral tolerance prevents pathological inflammatory responses towards innocuous foreign antigens via peripheral regulatory T cells (pTreg cells). However, whether a particular subset of antigen-presenting cells (APCs) is required during dietary antigen exposure to instruct naïve CD4+ T cells to differentiate into pTreg cells has not been defined. Using myeloid lineage-specific APC depletion in mice, we found that monocyte-derived APCs are dispensable, while classical dendritic cells (cDCs) are critical for pTreg cell induction and oral tolerance. CD11b¬– cDCs from the gut-draining lymph nodes efficiently induced pTreg cells, and conversely, loss of IRF8-dependent CD11b– cDCs impaired their polarization, although oral tolerance remained intact. These data reveal the hierarchy of cDC subsets in pTreg cell induction and their redundancy during oral tolerance development. Overall design: Four dendritic cell subpopulations from mouse mesenteric lymphnodes were sorted and compared in their gene expression profile
Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance.
Specimen part, Cell line, Subject
View SamplesOral tolerance prevents pathological inflammatory responses towards innocuous foreign antigens via peripheral regulatory T cells (pTreg cells). However, whether a particular subset of antigen-presenting cells (APCs) is required during dietary antigen exposure to instruct naïve CD4+ T cells to differentiate into pTreg cells has not been defined. Using myeloid lineage-specific APC depletion in mice, we found that monocyte-derived APCs are dispensable, while classical dendritic cells (cDCs) are critical for pTreg cell induction and oral tolerance. CD11b¬– cDCs from the gut-draining lymph nodes efficiently induced pTreg cells, and conversely, loss of IRF8-dependent CD11b– cDCs impaired their polarization, although oral tolerance remained intact. These data reveal the hierarchy of cDC subsets in pTreg cell induction and their redundancy during oral tolerance development. Overall design: Sorted naïve CD45.1 OT-II CD4 T cells were co-cultured with four dendritic cell subpopulations sorted from mouse mesenteric lymphnodes. 24h later OT-II cells were sorted again and compared in their gene expression profile.
Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance.
Specimen part, Cell line, Subject
View SamplesThe molecular mechanisms underlying the great differences in susceptibility to noise-induced hearing loss (NIHL) exhibited by both humans and laboratory animals are unknown. Using microarray technology, the present study demonstrates that the effects of noise overexposure on the expression of molecules likely to be important to the development of NIHL differ among inbred mice that have distinctive susceptibilities to NIHL including B6.CAST, 129X1/SvJ, and 129S1/SvImJ. The noise-exposure protocol produced, on average, a permanent loss of about 40 dB in sensitivity for auditory brainstem responses in susceptible B6.CAST mice, but no threshold elevations for the two resistant 129S1/SvImJ and 129X1/SvJ substrains. Measurements of noise-induced gene expression changes 6 h after the noise exposure revealed significant alterations in the expression levels of 48 genes in the resistant mice, while by these same criteria, there were seven differentially expressed genes in the susceptible B6.CAST mice. Differentially expressed genes in both groups of mice included subsets of transcription factors. However, only in the resistant mice was there a significant induction of proteins involved in cell-survival pathways such as HSP70, HSP40, p21, GADD45beta, Ier3, and Nf-kappaB. Moreover, increased expression of three of these factors after noise was confirmed at the protein level. Drastically enhanced HSP70, GADD45beta, and p21 immunostaining were detected 6 h after the noise exposure in subsets of cells of the lateral wall, spiral limbus, and organ of Corti as well as in cochlear nerve fibers. Upregulation of these proteins after noise exposure likely contributes to the prevalence of survival cellular pathways and thus to the resistance to NIHL that is characteristic of the 129X1/SvJ mice.
Noise-induced changes in gene expression in the cochleae of mice differing in their susceptibility to noise damage.
No sample metadata fields
View SamplesA triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes.
A triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes.
No sample metadata fields
View SamplesWhile infection of chickens with highly pathogenic avian influenza (HPAI) H5N1 subtypes often leads to complete mortality within 24 to 48 h, infection of ducks in contrast causes mild or no clinical signs. Rapid onsets of fatal disease in chickens, but with no evidence of severe clinical symptoms in ducks, suggest underlying differences in their innate immune mechanisms. To understand the molecular basis for such difference, chicken and duck primary lung cells, infected with a low-pathogenicity avian influenza (LPAI) and two HPAI H5N1 viruses, were subjected to RNA expression profiling using Affymetrix Chicken GeneChip arrays.
Highly pathogenic avian influenza virus infection in chickens but not ducks is associated with elevated host immune and pro-inflammatory responses.
Age, Specimen part, Treatment
View SamplesFor the anucleate platelet it has been unclear how well platelet transcriptomes correlate among different donors or across different RNA profiling platforms, and what the transcriptomes relationship is with the platelet proteome. We generated RNA-seq pro-files of the long RNA transcriptomes from the platelets of 10 healthy young males (5 white and 5 black) with median age of 24.5 years, no notable clinical history, and no pre-vious history of thrombosis or bleeding. We also profiled the subjects messenger RNAs using the Affymetrix microarray gene expression system. We found that the abundance of platelet mRNA transcripts was highly correlated across the 10 individuals, inde-pendently of race and of the employed technology. Our RNA-seq data also showed that these high inter-individual correlations extend beyond mRNAs to several categories of non-coding RNAs. Pseudogenes represented a notable exception to this by exhibiting a clear difference in expression by race. Comparison of our mRNA signatures with the only publicly available quantitative platelet proteome data showed that most (87.5%) identified platelet proteins had a detectable corresponding mRNA. However, a high number of mRNAs that were present in the transcriptomes of all 10 individuals had no representa-tion in the proteome. The Spearman correlation of the relative abundances for those platelet genes that were represented by both an mRNA and a protein showed a weak (~0.3) yet statistically significant (P=5.0E-16) connection. Further analysis of the overlap-ping and non-overlapping platelet mRNAs and proteins identified gene groups corre-sponding to distinct cellular processes, a finding that provides novel insights for platelet biology.
The human platelet: strong transcriptome correlations among individuals associate weakly with the platelet proteome.
Specimen part
View SamplesTransplant recipients spontaneously accepting their grafts in the absence of immunosuppression demonstrate the feasibility of attaining allograft tolerance in humans. Previous studies have identified blood transcriptional and cell phenotypic markers specific for either liver or kidney tolerant recipients, but the two settings have not been directly compared yet employing the same platforms. To identify potential similarities in immune parameters between recipients tolerant to different organs, we analyzed blood samples from tolerant and non-tolerant liver and kidney recipients employing whole genome expression microarrays. Tolerant and non-tolerant liver and kidney recipients differed in their peripheral blood expression patterns, but no significant overlap was observed between the two datasets. This was confirmed at the functional level by employing gene set enrichment analysis.The lack of obvious similarities in immune parameters associated with liver and kidney tolerant recipients implies the involvement of different mechanisms in the two settings and argues against the existence of a common immunological constant of spontaneous operational tolerance in clinical transplantation.
Comparison of transcriptional and blood cell-phenotypic markers between operationally tolerant liver and kidney recipients.
Specimen part
View SamplesDue to its low level of nephrotoxicity and capacity to harness tolerogenic pathways, sirolimus (SRL) has been proposed as an alternative to calcineurin inhibitors in transplantation. The exact mechanisms underlying its unique immunosuppressive profile in humans, however, are still not well understood. In the current study we aimed to depict the in vivo effects of SRL in comparison with cyclosporin A (CSA) by employing gene expression profiling and multiparameter flow cytometry on blood cells collected from stable kidney recipients under immunosuppressant monotherapy. SRL recipients displayed an increased frequency of CD4+CD25highFoxp3+ T cells. However, this was accompanied by an increased number of effector memory T cells and by enrichment in NFkB-related pro-inflammatory expression pathways and monocyte and NK cell lineage-specific transcripts. Furthermore, measurement of a transcriptional signature characteristic of operationally tolerant kidney recipients failed to detect differences between SRL and CSA treated recipients. In conclusion, we show here that the blood transcriptional profile induced by SRL monotherapy in vivo does not resemble that of operationally tolerant recipients and is dominated by innate immune cells and NFkB-related pro-inflammatory events. These data provide novel insights on the complex effects of SLR on the immune system in clinical transplantation.
Comparative transcriptional and phenotypic peripheral blood analysis of kidney recipients under cyclosporin A or sirolimus monotherapy.
Specimen part, Disease
View Samples