refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 198 results
Sort by

Filters

Technology

Platform

accession-icon GSE33656
Gene expression in articular cartilage - subchondral bone of FRZB knockout mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Objective : To study molecular changes in the articular cartilage and subchondral bone of the tibial plateau from mice deficient in frizzled related protein (Frzb) compared to wild-type mice by transcriptome analysis.

Publication Title

Tight regulation of wingless-type signaling in the articular cartilage - subchondral bone biomechanical unit: transcriptomics in Frzb-knockout mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE36700
Gene expression profiles in synovial biopsies from patients with arthritis
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Rheumatoid arthritis (RA) is an inflammatory joint disorder that results in progressive joint damage when insufficiently treated. In order to prevent joint destruction and functional disability in RA, early diagnosis and initiation of appropriate treatment with Disease-Modifying Antirheumatic Drugs (DMARDs) is needed. However, in daily clinical practice, patients may initially display symptoms of arthritis that do not fulfil the classification criteria for a definite diagnosis of RA, or any other joint disease, a situation called Undifferentiated Arthritis (UA). Out of the patients with UA, 30 to 50% usually develop RA, and early identification of these remains a challenge.

Publication Title

Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Treatment

View Samples
accession-icon GSE24742
Effects of Rituximab on global gene expression profiles in the RA synovium
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Objective: Rituximab displays therapeutic benefits in the treatment of rheumatoid arthritis (RA) patients resistant to TNF blockade. However, the precise role of B cells in the pathogenesis of RA is still unknown. In this study we investigated the global molecular effects of rituximab in synovial biopsies obtained from anti-TNF resistant RA patients before and after administration of the drug.

Publication Title

Rituximab treatment induces the expression of genes involved in healing processes in the rheumatoid arthritis synovium.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE108036
Comparative analysis of cartilage tissue from ANP32A knockout mice and wildtype C57/Bl6 mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A genetic association between the ANP32A gene and osteoarthritis has been suggested. We compared transcriptome profiles of the articular cartilage and subchondral bone from mice deficient in ANP32A with wild-type mice to get insights into the role of ANP32A in the pathogenesis of ostearthritis.

Publication Title

ANP32A regulates ATM expression and prevents oxidative stress in cartilage, brain, and bone.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE60293
RNA Expression Profiling of Human iPSC-Derived Cardiomyocytes in a Cardiac Hypertrophy Model
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

RNA expression profiling of human iPSC-derived cardiomyocytes in a cardiac hypertrophy model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60291
RNA Expression Profiling of Human iPSC-Derived Cardiomyocytes in a Cardiac Hypertrophy Model [mRNA expression]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cardiac hypertrophy is an independent risk factor for cardiovascular disease and heart failure. There is increasing evidence that microRNAs (miRNAs) play an important role in the regulation of messenger RNA (mRNA) and the pathogenesis of various cardiovascular diseases. However, the ability to comprehensively study cardiac hypertrophy on a gene regulatory level is impacted by the limited availability of human cardiomyocytes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the opportunity for disease modeling.

Publication Title

RNA expression profiling of human iPSC-derived cardiomyocytes in a cardiac hypertrophy model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35543
Gene expression profiling of in vitro derived induced and natural FOXP3+ regulatory T cells and ex-iTreg cells in the mouse
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Induced Treg (iTreg) cells are essential for tolerance and can be used therapeutically, yet their stability in vivo and mechanisms of suppression are unresolved. Here, we used a treatment model of colitis to examine the role of autologous IL-10 in iTreg cell function. Mice treated with IL-10+/+ iTreg cells in combination with IL-10/ natural Treg (nTreg) cells survived and gained weight, even though iTreg cells were numerically disadvantaged and comprised just ~20% of all Treg cells in treated mice. Notably, ~85% of the transferred iTreg cells lost Foxp3 expression (ex-iTreg) but retained a portion of the iTreg transcriptome which failed to limit their pathogenic potential. The TCR repertoires of iTreg and ex-iTreg cells exhibited almost no overlap, which indicates that the two populations are clonally unrelated and maintained by different selective pressures. These data demonstrate a potent and critical role for iTreg cell produced IL-10 that can supplant the IL-10 produced by nTreg cells and compensate for the inherent instability of the iTreg population.

Publication Title

IL-10 produced by induced regulatory T cells (iTregs) controls colitis and pathogenic ex-iTregs during immunotherapy.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE56963
The effect of HDAC inhibitor, 4b, on skeletal muscle gene expression
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

To assess the effects of histone deacetylase (HDAC) inhibitor, HDACi 4b, treatment on muscle function on a molecular level, we performed microarray analysis on skeletal muscle (gastrocnemius) samples from wt and N17182Q mice treated with the HDAC inhibitor 4b for 3 months (50 mg/kg; s.c. injection 3x weekly; n=4 per group). The transcriptome pattern in N17182Q mice compared to wt controls consisted of deficits in the expression of genes related to mitochondrial function and oxidative metabolism. In addition, we noted that numerous genes associated with basal contractile function were altered in HD N17182Q mice. These include genes related to the muscle contractile complex, Tnnt3 and Myh8, as well as several additional myosin genes: myosin heavy chain genes, Myh10 and Myh4, and myosin light chain genes, Myl1, Mylc2 and Mylk. These findings implicate deficits in the underlying contractile function in skeletal muscle from HD mice. Further, we found robust effects of 4b treatment on the expression of genes in skeletal muscle, with 556 genes showing significantly altered expression, at p<0.005, in 4b-treated N17182Q muscle compared to vehicle-treated control mice.

Publication Title

HDAC inhibition imparts beneficial transgenerational effects in Huntington's disease mice via altered DNA and histone methylation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE33188
Expression data from Pseudomonas aeruginosa PAO1 and its isogenic ampR mutant in the presence and absence of sub-MIC -lactam exposure.
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

The transcriptional regulator AmpR controls expression of the AmpC -lactamase in P. aeruginosa and other bacteria. Studies have demonstrated that in addition to regulating ampC expression, AmpR also regulates the expression of the sigma factor AlgT/U and the production of some quorum-sensing regulated virulence factors. In order to understand the ampR regulon, we compared the expression profiles of PAO1 and its isogenic ampR mutant, PAOampR in the presence and absence of sub-MIC -lactam stress. The analysis demonstrates that the ampR regulon is much more extensive than previously thought, with the deletion of ampR affecting the expression of over 300 genes. Expression of an additional 207 genes are affected by AmpR when the cells are exposed to sub-MIC -lactam stress, indicating that the ampR regulon in P. aeruginosa is much more extensive than previously thought.

Publication Title

The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP023154
Next Generation Sequencing of HM1, HP1a-/-, and HP1b-/- ESC transcriptomes
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

HM1, HP1a-/-, and HP1b-/- ESC transcriptomes were generated to determine whether depletion of these HP1 proteins influences gene and/or retroelement expression Overall design: mRNA profiles of HP1a and HP1b Knockouts and its corresponding wildtype

Publication Title

Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact