Intestinal organoids are complex three-dimensional structures that mimic cell type composition and tissue organization of the intestine by recapitulating the self-organizing capacity of cell populations derived from a single stem cell. Crucial in this process is a first symmetry-breaking event, in which only a fraction of identical cells in a symmetrical cyst differentiate into Paneth cells, which in turn generates the stem cell niche and leads to asymmetric structures such as crypts and villi. We here combine a quantitative single-cell gene expression and imaging approach to characterize the development of intestinal organoids from a single cell. We show that intestinal organoid development follows a regeneration process driven by transient Yap1 activation. Cell-to-cell variability in Yap1, emerging in symmetrical cysts, initiates a Notch/Dll1 lateral inhibition event driving the symmetry-breaking event and the formation of the first Paneth cell. Our findings reveal how single cells exposed to a uniform growth-promoting environment have the intrinsic ability to generate emergent, self-organized behavior resulting in the formation of complex multicellular asymmetric structures. Overall design: Single cell RNA sequencing of single cells isolated from intestinal organoids day3 and intestinal organoids day 5
Self-organization and symmetry breaking in intestinal organoid development.
Age, Specimen part, Cell line, Subject
View SamplesWe used microarrays to detail genome-wide gene expression underlying cardiac myocyte pathologies and identified candidate genes and specific pathways affecting cardiac myopathies
Reduced phosphoinositide 3-kinase (p110alpha) activation increases the susceptibility to atrial fibrillation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Global gene expression analysis of amniotic fluid cell-free RNA from recipient twins with twin-twin transfusion syndrome.
Sex
View SamplesTo understand the biological pathways involved in twin-twin transfusion syndrome (TTTS) by performing global gene expression analysis of amniotic fluid (AF) cell-free RNA
Global gene expression analysis of amniotic fluid cell-free RNA from recipient twins with twin-twin transfusion syndrome.
Sex
View SamplesTo understand the biological pathways involved in twin-twin transfusion syndrome (TTTS) by performing global gene expression analysis of amniotic fluid (AF) cell-free RNA
Global gene expression analysis of amniotic fluid cell-free RNA from recipient twins with twin-twin transfusion syndrome.
Sex
View SamplesWe compared gene expression differences in Lyl-1 knockout vs wildtype LMPPs
The transcription factor Lyl-1 regulates lymphoid specification and the maintenance of early T lineage progenitors.
Specimen part
View SamplesTo assess gene expression changes in Irgm1 (Lrg-47) deficient HSCs
Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling.
No sample metadata fields
View SamplesIn this study, we assess the effect of zoledronic acid on clearance of disseminated tumour cells (DTCs) from the bone marrow in women undergoing neoadjuvant chemotherapy for breast cancer
CXCR4 Protein Epitope Mimetic Antagonist POL5551 Disrupts Metastasis and Enhances Chemotherapy Effect in Triple-Negative Breast Cancer.
Specimen part
View SamplesTo identify signature genes that help distinguish (1) sepsis from non-infectious causes of systemic inflammatory response syndrome, (2) between Gram-positive and Gram-negative sepsis.
Gene-expression profiling of peripheral blood mononuclear cells in sepsis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Alterations in miRNA levels in the dentate gyrus in epileptic rats.
Specimen part, Treatment
View Samples