refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 64 results
Sort by

Filters

Technology

Platform

accession-icon GSE12420
Gene profiling of heart atria in PI3K and Mst1 mouse models
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to detail genome-wide gene expression underlying cardiac myocyte pathologies and identified candidate genes and specific pathways affecting cardiac myopathies

Publication Title

Reduced phosphoinositide 3-kinase (p110alpha) activation increases the susceptibility to atrial fibrillation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38681
Lyl-1 knockout vs wildtype Lymphoid Primed Multipotent Progenitors (LMPPs)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We compared gene expression differences in Lyl-1 knockout vs wildtype LMPPs

Publication Title

The transcription factor Lyl-1 regulates lymphoid specification and the maintenance of early T lineage progenitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11591
Expression profiling of Irgm1-/- (Lrg-47) HSCs
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To assess gene expression changes in Irgm1 (Lrg-47) deficient HSCs

Publication Title

Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP150775
Self-organization and symmetry breaking in intestinal organoid development [scRNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Intestinal organoids are complex three-dimensional structures that mimic cell type composition and tissue organization of the intestine by recapitulating the self-organizing capacity of cell populations derived from a single stem cell. Crucial in this process is a first symmetry-breaking event, in which only a fraction of identical cells in a symmetrical cyst differentiate into Paneth cells, which in turn generates the stem cell niche and leads to asymmetric structures such as crypts and villi. We here combine a quantitative single-cell gene expression and imaging approach to characterize the development of intestinal organoids from a single cell. We show that intestinal organoid development follows a regeneration process driven by transient Yap1 activation. Cell-to-cell variability in Yap1, emerging in symmetrical cysts, initiates a Notch/Dll1 lateral inhibition event driving the symmetry-breaking event and the formation of the first Paneth cell. Our findings reveal how single cells exposed to a uniform growth-promoting environment have the intrinsic ability to generate emergent, self-organized behavior resulting in the formation of complex multicellular asymmetric structures. Overall design: Single cell RNA sequencing of single cells isolated from intestinal organoids day3 and intestinal organoids day 5

Publication Title

Self-organization and symmetry breaking in intestinal organoid development.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE47394
Global gene expression analysis of amniotic fluid cell-free RNA from recipient twins with twin-twin transfusion syndrome
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Global gene expression analysis of amniotic fluid cell-free RNA from recipient twins with twin-twin transfusion syndrome.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE47392
Global gene expression analysis of amniotic fluid cell-free RNA from recipient twins with twin-twin transfusion syndrome [Set 1]
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To understand the biological pathways involved in twin-twin transfusion syndrome (TTTS) by performing global gene expression analysis of amniotic fluid (AF) cell-free RNA

Publication Title

Global gene expression analysis of amniotic fluid cell-free RNA from recipient twins with twin-twin transfusion syndrome.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE47393
Global gene expression analysis of amniotic fluid cell-free RNA from recipient twins with twin-twin transfusion syndrome [Set 2]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To understand the biological pathways involved in twin-twin transfusion syndrome (TTTS) by performing global gene expression analysis of amniotic fluid (AF) cell-free RNA

Publication Title

Global gene expression analysis of amniotic fluid cell-free RNA from recipient twins with twin-twin transfusion syndrome.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE61142
Effects of the insulin degrading enzyme silencing on the transcriptome of HepG2 cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Insulin degrading enzyme (IDE) is a major enzyme responsible for insulin degradation in the liver. The modulation of insulin degrading enzyme activity is hypothesized to be a link between T2DM and liver cancer. Results provide insight into role of IDE in proliferation and other cell functions.

Publication Title

Modulation of insulin degrading enzyme activity and liver cell proliferation.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP051333
Effect of PDZ domain binding Kinase inhibition using TOPK-32 (called PBKi) on C4-2 cell transcriptome
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Analysis of C4-2 prostate cancer cell line after 6 hrs of treatment with TOPK-32. PBK is overexpressed in a number of solid tumours, including prostate cancer. Results provide insight into the molecular mechanisms of PBK in prostate carcinogenesis. Overall design: This experiment was designed to understand the regulation of transcriptome by PDZ domain binding kinase, which is an important kinase with role in cell cycle. The cells were treated with a catalytic inhibitor TOPK32 which inhibits the kinase activity of PBK protein.

Publication Title

A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP050332
Effect of PBK knockdown on C4-2 cell transcriptome
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Analysis of C4-2 Prostate cancer cell line after 72 hours of knockdown. PBK is overexpressed in a number of solid tumours, including prostate cancer. Results provide insight into the molecular mechanisms of PBK in prostate carcinogenesis. Overall design: This experiment was designed to understand the regulation of transcriptiome by PDZ domain binding kinase (PBK), which is an important kinase with role in cell cycle. In order to achieve this, the endogenous protein was knocked down using siRNA pool that targets the PBK mRNA.

Publication Title

A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact