refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 115 results
Sort by

Filters

Technology

Platform

accession-icon GSE6933
Unique Molecular Signature of Multipotent Adult Progenitor Cells (Affy)
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Rat Expression 230A Array (rae230a)

Description

We compare the transcriptome of embryonic stem cells (ESCs), adult stem cells with apparent greater differentiation potential such as multipotent adult progenitor cells (MAPCs), mesenchymal stem cells (MSCs) and neurospheres (NS). Mouse and rat MAPCs were used in this study and two different array platforms (Affymetrix and NIA) were used for mouse samples.

Publication Title

Comparative transcriptome analysis of embryonic and adult stem cells with extended and limited differentiation capacity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43475
UNRAVELING A NOVEL TRANSCRIPTION FACTOR CODE INDUCTIVE FOR THE HUMAN ARTERIAL-SPECIFIC ENDOTHELIAL CELL SIGNATURE
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Endothelial cells (EC) lining arteries and veins have distinct molecular and functional signatures. The (epi)genetic regulatory mechanisms underlying this heterogeneity in human EC are incompletely understood. Using genome-wide microarray screening we established a specific fingerprint of freshly isolated arterial (HUAEC) and venous EC (HUVEC) from human umbilical cord comprising 64 arterial and 12 venous genes, representing distinct functions and pathways. Among the arterial genes were 8 transcription factors, including HEY2, a downstream target of Notch signaling and the current golden standard pathway for arterial EC specification. Short-term culture of HUAEC or HUVEC abrogated differential gene expression resulting in a default state. Erasure of arterial gene expression was at least in part due to loss of canonical Notch activity and HEY2 expression. Notably, nCounter analysis revealed that restoring HEY2 expression or Delta-like 4 (Dll4)-induced Notch signaling in cultured HUVEC or HUAEC only partially reinstated the arterial EC gene signature while combined overexpression of the 8 transcription factors restored this fingerprint much more robustly. Each transcription factor had a different impact on gene regulation, with some stimulating only few and others boosting a large proportion of arterial genes. Interestingly, although there was some overlap and cross-regulation, the transcription factors largely complemented each other in regulating the arterial EC gene profile. Thus, our study showed that Notch signaling determines only part of the arterial EC signature and identified additional novel and complementary transcriptional players in the complex regulation of human arteriovenous EC identity

Publication Title

Unraveling a novel transcription factor code determining the human arterial-specific endothelial cell signature.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53914
K1 and K15 of Kaposi sarcoma-associated herpes virus are functional homologues of latent membrane protein 2A of Epstein-Barr virus
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

LMP2A of Epstein-Barr virus is a receptor that mimics an activated B cell receptor, BCR. K1 and K15, related receptors of Kaposi sarcoma-associated herpes virus, KSHV, are expressed in virus-associated tumors but their functions are less obvious. We addressed this uncertainty with mutant EBVs encoding the KSHV genes K1 or K15 in lieu of LMP2A and infected primary human B cells with them. K1 and K15 encoded proteins appear to have noncomplementing redundant functions in this model but our findings suggest that both KSHV proteins can replace LMP2As key activities contributing to the survival, activation and proliferation of B cells.

Publication Title

K1 and K15 of Kaposi's Sarcoma-Associated Herpesvirus Are Partial Functional Homologues of Latent Membrane Protein 2A of Epstein-Barr Virus.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE95309
Gene expression analyses in otefin mutant Drosophila ovaries
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

LEM Domain proteins are key components of the nuclear lamina. Mutations in LEM-D proteins cause dystrophic diseases associated with compromised adult stem cells, yet it remains unclear how LEM-D proteins support stem cell function. Studies described here use the homologue of the LEM-D protein emerin in Drosophila, Otefin (Ote) as a model to understand LEM-D protein function in adult stem cells. Loss of Ote causes female sterility due to a complex germline stem cell (GSC) phenotype that includes both an early block in germline differentiation followed by GSC death. In vivo cell cycle analysis revealed that ote mutant GSCs display a lengthened S phase.We find that loss of the DNA Damage Response (DDR) Chk2 is able to not only rescue the lengthened S phase, but also GSC death and the block in germline differentiation. Activation of detrimental checkpoint in absence of Ote is conserved in both male and female GSCs and surprisingly occurs independent of detectable canonical DDR triggers, including transposon de-repression and DNA damage. Two defects were found to occur upstream of Chk2 activation: nuclear lamina morphological defects and altered heterochromatin organization. Together, our data identify the primary cause for a compromised adult stem cell population in the absence of a LEM-D protein.

Publication Title

Nuclear lamina dysfunction triggers a germline stem cell checkpoint.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9801
Human Monocytes to M-CSF differentiated Macrophages
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This dataset was created to study M-CSF dependent in vitro differentiation of human monocytes to macrophages as a model process to demonstrate that independent component analysis (ICA) is a useful tool to support and extend knowledge-based strategies and to identify complex regulatory networks or novel regulatory candidate genes.

Publication Title

Analyzing M-CSF dependent monocyte/macrophage differentiation: expression modes and meta-modes derived from an independent component analysis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68000
Transcriptome of human liver cells and culture-activated hepatic stellate cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

The molecular determinants of a healthy human liver cell phenotype remain largely uncharacterized. In addition, the gene expression changes associated with activation of primary human hepatic stellate cells, a key event during fibrogenesis, remain poorly characterized. Here, we provide the transriptomic profile underpinning the healthy phenotype of human hepatocytes, liver sinusoidal endothelial cells (LSECs) and quiescent hepatic stellate cells (qHSCs) as well as activated HSCs (aHSCs)

Publication Title

Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE48209
Microvascular endothelial heterogeneity
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The goal of this study was to gain insight into the molecular heterogeneity of capillary endothelial cells derived from different organs by microarray profiling of freshly isolated cells and identify transcription factors that may determine the specific gene expression profile of endothelial cells from different tissues. The study focused on heart endothelial cells and presents a validated signature of 31 genes that are highly enriched in heart endothelial cells. Within this signature 5 transcription factors were identified and the optimal combination of these transcription factors was determined for specification of the heart endothelial fingerprint.

Publication Title

Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP068673
Distinct myeloid progenitor differentiation pathways uncovered through single cell RNA sequencing
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Haematopoietic stem cells can differentiate into all blood cell types. In this process, cells become progressively restricted to a single cell type. The order in which differentiating cells loose lineage potential, and the prospective isolation of cells with a defined potential remains a long-standing question. We performed gene expression analysis of haematopoietic cells from Gata1-EGFP reporter mice, leading to a model for hematopoiesis where the initial lineage decision consists of a seperation of erythroid/megakaryocyte/mast cell/eosinophil potential from lymphopoietic/monocyte/neutrophil potential Overall design: Find unbiased heterogeneity in the preGM hematopoietic progenitor population

Publication Title

Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE49241
Gene expression in haematopoietic stem and progenitor cells from Gata1-EGFP reporter mouse bone marrow
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Haematopoietic stem cells can differentiate into all blood cell types. In this process, cells become progressively restricted to a single cell type. The order in which differentiating cells loose lineage potential, and the prospective isolation of cells with a defined potential remains a long-standing question.

Publication Title

Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP062298
Histamine footprint on the human exercise transcriptome
  • organism-icon Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Transcriptome wide analysis of the skeletal muscle response to exercise in humans. Subjects performed one 60-min bout of moderate-intensity single-leg knee-extension exercise, and samples were obtained by biopsy of the vastus lateralis muscle before, immediately after, and at 3 hr post-exercise. Eight subjects were control (no drug), and eight received combined H1/H2-histamine receptor blockade prior to exercise. Overall design: Three time-points in each of 8 control and 8 histamine-blockade subjects. Time points are before exercise, immediately after exercise, and at 3 hrs post-exercise. Note: Alignments were re-run using an updated piece of software and the results are reported in PMID 29455450. The following supplementary files contain information on the differentially expressed genes that were identified by the new analysis of the data: GSE71972_Differential_Expression_Tables_Updated_20160830.xlsx GSE71972_Protein_Coding_Full_Counts_Updated_20160830.xlsx

Publication Title

A single dose of histamine-receptor antagonists before downhill running alters markers of muscle damage and delayed-onset muscle soreness.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact