Tumor associated macrophages are contributing to local invasion, angiogensis, and metastasis during the progression of many kinds of tumor including glioma
Oligodendrocyte progenitor cells promote neovascularization in glioma by disrupting the blood-brain barrier.
Specimen part
View SamplesThe pathways involved in hierarchical differentiation of human embryonic stem cells (hESC) into abundant and durable endothelial cells (EC) are unknown. We employed an EC-specific VE-cadherin promoter driving GFP (hVPr-GFP) to screen for factors that augmented yields of vascular-committed ECs from hESCs. In phase 1 of our approach, inhibition of TGFb, precisely at day 7 of hESC differentiation, enhanced emergence of hVPr-GFP+ ECs by 10-fold. In the second phase, TGFb-inhibition preserved proliferation and vascular identity of purified ECs, resulting in net 36-fold expansion of homogenous EC-monolayers, and allowing transcriptional profiling that revealed a unique angiogenic signature defined by the VEGFR2highId1highVE-cadherin+EphrinB2+CD133+HoxA9- phenotype. Using an Id1-YFP hESC reporter line, we showed that TGFb-inhibition sustained Id1 expression in hESC-derived ECs, which was required for increased proliferation and preservation of EC commitment. These data provide a multiphasic method for serum-free differentiation and long-term maintenance of authentic hESC-derived ECs, establishing clinical-scale generation of transplantable human ECs.
Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent.
Specimen part
View SamplesHT induces an OXPHOS metabolic editing of ER+ breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133hi/ERlo cells mediating metastatic progression, which is sensitive to dual targeted therapy
Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Medulloblastoma subgroups remain stable across primary and metastatic compartments.
Sex, Age, Specimen part, Subject
View SamplesAffymetrix Human Gene 2.0 ST Array profiling of 9 pairs of matched primary-metastases medulloblastoma samples.
Medulloblastoma subgroups remain stable across primary and metastatic compartments.
Sex, Age, Specimen part, Subject
View SamplesStudies have shown that HIV-infected patients develop neurocognitive disorders characterized by neuronal dysfunction. The lack of productive infection of neurons by HIV suggests that viral and cellular proteins, with neurotoxic activities, released from HIV-1-infected target cells can cause this neuronal deregulation. The viral protein R (Vpr), a protein encoded by HIV-1, has been shown to alter the expression of various important cytokines and inflammatory proteins in infected and uninfected cells; however the mechanisms involved remain unclear. Using a human neuronal cell line, we found that Vpr can be taken up by neurons causing: (i) deregulation of calcium homeostasis, (ii) endoplasmic reticulum-calcium release, (iii) activation of the oxidative stress pathway, (iv) mitochondrial dysfunction and v- synaptic retraction. In search for the cellular factors involved, we performed microRNAs and gene array assays using human neurons (primary cultures or cell line, SH-SY5Y) that we treated with recombinant Vpr proteins. Interestingly, Vpr deregulates the levels of several microRNAs (e.g. miR-34a) and their target genes (e.g. CREB), which could lead to neuronal dysfunctions. Therefore, we conclude that Vpr plays a major role in neuronal dysfunction through deregulating microRNAs and their target genes, a phenomenon that could lead to the development of neurocognitive disorders.
Deregulation of microRNAs by HIV-1 Vpr protein leads to the development of neurocognitive disorders.
Specimen part, Cell line, Treatment
View SamplesPancreatic cancers (PCs) are highly metastatic with poor prognosis, mainly due to delayed detection. We hypothesized that intercellular communication is critical for metastatic progression. Here, we show that PC-derived exosomes induce liver pre-metastatic niche formation in naïve mice and consequently increase liver metastatic burden. Uptake of PC-derived exosomes by Kupffer cells caused transforming growth factor ß secretion and upregulation of fibronectin production by hepatic stellate cells. This fibrotic microenvironment enhanced recruitment of bone marrow-derived macrophages. We found that macrophage migration inhibitory factor (MIF) was highly expressed in PC-derived exosomes, and its blockade prevented liver pre-metastatic niche formation and metastasis. Compared to patients whose pancreatic tumors did not progress, MIF was markedly higher in exosomes from stage I PC patients who later developed liver metastasis. These findings suggest that exosomal MIF primes the liver for metastasis and may be a prognostic marker for the development of PC liver metastasis. Overall design: Normal pancreas and Pancreatic cancer exosomes education of human von Kupffer cells in vitro
Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver.
No sample metadata fields
View SamplesTo identify candidate genes regulated by forkhead transcription factor box A2 (FOXA2) in the uterus, control and Foxa2-deleted uteri were collected at day of pseudopregnancy (DOPP) 3.5 (DOPP 0.5= vaginal plug). Microarray analysis identified differentially expressed genes in the Foxa2-deleted as compared to control uteri that are candidiate FOXA2-regulated genes in the uterus.
Integrated chromatin immunoprecipitation sequencing and microarray analysis identifies FOXA2 target genes in the glands of the mouse uterus.
Specimen part
View SamplesProgestins have long been used clinically for the treatment of endometrial cancers, however, the response rates to progestin therapy vary and the molecular mechanisms behind progestin insensitivity are poorly understood. We hypothesized that in PTEN mutated endometrial cancers, hyperactive Akt signaling downregulates Progesterone Receptor B (PRB) transcriptional activity, leading to overall impaired progestin responses. We report that knockdown of Akt is sufficient to upregulate a subset of PRB target genes.
Akt regulates progesterone receptor B-dependent transcription and angiogenesis in endometrial cancer cells.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Research resource: Genome-wide profiling of progesterone receptor binding in the mouse uterus.
Sex, Age, Specimen part, Treatment
View Samples