This SuperSeries is composed of the SubSeries listed below.
Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers.
Specimen part
View SamplesNeural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulation provide novel tools to understand the neural crest induction network.
Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers.
Specimen part
View SamplesNeural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulation provide novel tools to understand the neural crest induction network.
Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers.
Specimen part
View SamplesMyocardial infarction (MI) often results in left ventricular (LV) remodeling followed by heart failure (HF). It is of great clinical importance to understand the molecular mechanisms that trigger transition from compensated LV injury to HF and to identify relevant diagnostic biomarkers. In this study, we performed transcriptional profiling of LVs in rats with a wide range of experimentally induced infarct sizes and of peripheral blood mononuclear cells (PBMCs) in animals that developed HF.
Transcriptional profiling of left ventricle and peripheral blood mononuclear cells in a rat model of postinfarction heart failure.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons.
Specimen part
View Samples3 subtypes of cortical projection neurons were purified by fluorescence-activated cell sorting (FACS) at 4 different stages of development from mouse cortex. A detailed description of the data set is described in Arlotta, P et al (2005) and Molyneaux, BJ et al (2009). The hybridization cocktails used here were originally applied to the Affymetrix mouse 430A arrays and submitted as GEO accession number GSE2039. The same hybridization cocktails were then applied to the Affymetrix mouse 430 2.0 arrays, and those data are contained in this series.
Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons.
Specimen part
View SamplesM cells are the main site of bacterial translocation in the intestine. We used the in vitro M cell model to study the effect of the commensal bacteria; Lactobacillus salivarius, Eschericha coli and Bacteroides fragilis, on M cell gene expression.
Differential intestinal M-cell gene expression response to gut commensals.
Specimen part, Treatment
View SamplesMutations of the transcriptional regulator Mecp2 cause the X-linked autism spectrum disorder Rett syndrome (RTT), and Mecp2 has been implicated in several other neurodevelopmental disorders. To identify potential target genes regulated directly or indirectly by MeCP2, we performed comparative gene expression analysis via oligonucleotide microarrays on Mecp2-/y (Mecp2-null) and wild-type CPN purified via fluorescence-activated cell sorting (FACS).
Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice.
Specimen part
View SamplesExpression data from Kc167 cells under normal conditions. Used to assess expression levels of genes with ORC bound at promoter.
Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading.
Cell line
View SamplesCxcr7-/- mice die a few hours after birth. All of them display semilunar valves abnormalities, including bicuspid aortic or pulmonary valves. Those defects only become obvious before birth.
Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7.
No sample metadata fields
View Samples