refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 303 results
Sort by

Filters

Technology

Platform

accession-icon SRP028963
p53 shapes genome-wide changes in small non-coding RNA expression during the human DNA damage response
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Small RNA-seq on MCF10A, HCT116 and HCT116p53-/- cell lines after induction of DNA damage (5 Gy Irradiation). Overall design: Small RNA-seq on MCF10A, HCT116 and HCT116p53-/- at 4 and 24 hours after induction of DNA damage (5 Gy Irradiation), done in duplicate with respective control (0 hour) using illumina Genome Analyzer IIx

Publication Title

p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response.

Sample Metadata Fields

Cell line, Treatment, Subject, Time

View Samples
accession-icon GSE57220
Distinct Stromal Cell Factor Combinations Can Separately Control Hematopoietic Stem Cell Survival, Proliferation and Self-Renewal
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Hematopoietic stem cells (HSCs) are identified by their ability to sustain prolonged blood cell production in vivo, although recent evidence suggests that durable self-renewal (DSR) is shared by HSC subtypes with distinct self-perpetuating differentiation programs. Net expansions of DSR-HSCs occur in vivo, but molecularly defined conditions that support similar responses in vitro are lacking. We hypothesized that this might require a combination of factors that differentially promote HSC viability, proliferation and self-renewal. We now demonstrate that HSC survival and maintenance of DSR potential is variably supported by different Steel factor (SF)-containing cocktails with similar HSC-mitogenic activities. In addition, stromal cells produce other factors, including nerve growth factor and collagen 1, that can antagonize the apoptosis of initially quiescent adult HSCs and, in combination with SF and interleukin-11, produce >15-fold net expansions of DSR-HSCs ex vivo within 7 days. These findings suggest a new molecular basis for HSC control and expansion.

Publication Title

Distinct stromal cell factor combinations can separately control hematopoietic stem cell survival, proliferation, and self-renewal.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41758
The Lin28b-let-7-Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Mouse haematopoietic stem cells (HSCs) undergo a post-natal transition in several properties, including a marked reduction in their self-renewal activity. We now show that the developmentally timed change in this key function of HSCs is associated with their decreased expression of Lin28b and an accompanying increase in their let-7 microRNA levels. Lentivirus(LV)-mediated overexpression of Lin28 in adult HSCs elevates their self-renewal activity in transplanted irradiated hosts, as does overexpression of Hmga2, a well-established let-7 target that is upregulated in fetal HSCs. Conversely, HSCs from fetal Hmga2-/- mice do not display the heightened self-renewal activity that is characteristic of wild-type fetal HSCs. Interestingly, overexpression of Hmga2 in adult HSCs does not mimic the ability of elevated Lin28 to activate a fetal lymphoid differentiation program. Thus Lin28b may act as a master regulator of developmentally timed changes in HSC programs with Hmga2 serving as its specific downstream modulator of HSC self-renewal potential.

Publication Title

The Lin28b-let-7-Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17814
Role of zyxin in the tension-induced expression change in endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

One of the hallmarks in hypertension is a pressure-induced change in endothelial cell phenotype. A cytoskeletal protein zyxin, which was seen to translocate from focal adhesion contacts to the nucleus in response to the increased wall tensionis, mediates the tension-induced endothelial signaling.

Publication Title

Zyxin mediation of stretch-induced gene expression in human endothelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56612
Genetic deletion or pharmacologic blockade of the amino acid transporter Slc6a14 in mice suppresses breast cancer induced by Polyoma middle T oncogene
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Tumor cells have an increased need for amino acids. Mammalian cells cannot synthesize essential amino acids; they must obtain these amino acids via specific transporters. Glutamine, though a non-essential amino acid, is critical for tumor cells (glutamine addiction). Entry of amino acids into tumor cells is enhanced by upregulation of specific transporters. If the transporters that are specifically induced in tumor cells are identified, blockade of the induced transporters would constitute a logical strategy for cancer treatment.

Publication Title

Deletion of the amino acid transporter Slc6a14 suppresses tumour growth in spontaneous mouse models of breast cancer.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE23403
Loss of sarcolipin results in atrial remodeling
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Sarcolipin (SLN) is a key regulator of SERCA pump in atria. To determine the role of SLN in atrial Ca2+ homeostasis, we have generated a SLN null (sln-/-) mouse model. Ablation of SLN results in increased SR Ca2+ load and Ca2+ transients in atria. Further, loss of SLN results in electrophysiological and strcutural remodeling of atria.

Publication Title

Ablation of sarcolipin results in atrial remodeling.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE49658
Human inositol polyphosphate multikinase regulates transcript-selective nuclear mRNA export to preserve genome integrity
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Messenger (m)RNA export from the nucleus is essential for eukaryotic gene expression. Here, we identify a transcript-selective nuclear export mechanism affecting certain human transcripts, enriched for functions in genome duplication and repair, controlled by inositol polyphosphate multikinase (IPMK), an enzyme catalyzing inositol polyphosphate and phosphoinositide turnover. We studied transcripts encoding RAD51, a protein essential for DNA repair by homologous recombination (HR), to characterize the mechanism underlying IPMK-regulated mRNA export. IPMK depletion or catalytic inactivation selectively decreases the nuclear export of RAD51 mRNA, and RAD51 protein abundance, thereby impairing HR. Recognition of a sequence motif in the untranslated region of RAD51 transcripts by the mRNA export factor ALY requires IPMK. Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), an IPMK product, restores ALY recognition in IPMK-depleted cell extracts, suggesting a mechanism underlying transcript selection. Our findings implicate IPMK in a transcript-selective mRNA export pathway controlled by phosphoinositide turnover that preserves genome integrity in humans.

Publication Title

Human inositol polyphosphate multikinase regulates transcript-selective nuclear mRNA export to preserve genome integrity.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP087576
Adaptation of a RAS pathway activation signature from FF to FFPE tissues in colorectal cancer (FFPE RNA-Seq I)
  • organism-icon Homo sapiens
  • sample-icon 61 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Background: The KRAS gene is mutated in about 40% of colorectal cancer (CRC) cases, which has been clinically validated as a predictive mutational marker of intrinsic resistatnce to anti-EGFR inhibitor (EGFRi) therapy. Since nearly 60% of patients with a wild type KRAS fail to respond to EGFRi treatment, there is a need to develop more reliable molecular signatures to better predict response. Here we address the challenge of adapting a gene expression signature predictive of RAS pathway activation, created using fresh frozen (FF) tissues, for use with more widely available formalin fixed paraffin-embedded (FFPE) tissues. Methods: In this study, we evaluated the translation of an 18-gene RAS pathway signature score from FF to FFPE in 54 CRC cases, using a head-to-head comparison of five technology platforms. FFPE-based technologies included the Affymetrix GeneChip (Affy), NanoString nCounter(NanoS), Illumina whole genome RNASeq (RNA-Acc), Illumina targeted RNASeq(t-RNA), and Illumina stranded Total RNA-rRNA-depletion (rRNA). Results: Using Affy_FF as the "gold" standard, initial analysis of the 18-gene RAS scores on all 54 samples shows varying pairwise Spearman correlations, with (1) Affy_FFPE(r=0.233, p=0.090); (2) NanoS_FFPE(r=0.608, p<0.0001); (3) RNA-Acc_FFPE(r=0.175, p=0.21); (4) t-RNA_FFPE (r=-0.237, p=0.085); and (5) t-RNA (r=-0.012, p=0.93). These results suggest that only NanoString has successful FF to FFPE translation. The subsequent removal of identified "problematic" samples (n=15) and gene (n=2) further improves the correlations of Affy_FF with three of the five technologies: Affy_FFPE (r=0.672, p<0.0001); NanoS_FFPE (r=0.738, p<0.0001); and RNA-Acc_FFPE (r=0.483, p=0.002). Conclusions: Of the five technology platforms tested, NanoString technology provides a more faithful translation of the RAS pathway gene expression signature from FF to FFPE than the Affymetrix GeneChip and multiple RNASeq technologies. Moreover, NanoString was the most forgiving technology in the analysis of samples with presumably poor RNA quality. Using this approach, the RAS signature score may now be reasonably applied to FFPE clinical samples. Overall design: Fifty-four (54) FFPE evaluable tumor specimens were selected from a larger multi-center cohort of 468 well-characterized colorectal adenocarcinoma patients whose tissues were obtained between October 2006 and September 2010 at the University of South Florida. The sample cohort was composed of tumor samples that were available as matched fresh-frozen (FF) and formalin-fixed paraffin-embedded (FFPE) pairs.

Publication Title

Adaptation of a RAS pathway activation signature from FF to FFPE tissues in colorectal cancer.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE60447
Stretch-dependent genes in vascular smooth muscle cells
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Vascular smooth muscle cells (VSMCs) respond to biomechanical stretch with specific changes in gene expression which govern the phenotype of these cells. The mechanotransducer zyxin is a

Publication Title

Loss of the mechanotransducer zyxin promotes a synthetic phenotype of vascular smooth muscle cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE11505
The Arabidopsis BRAHMA Chromatin Remodelling ATPase Is Involved in Direct Repression of Embryonic Traits in Leaves
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Synthesis and accumulation of seed storage proteins (SSPs) is an important aspect of the seed maturation program. Genes encoding SSPs are specifically and highly expressed in the seed during maturation. However, the mechanisms that repress the expression of these genes in leaf tissue are not well understood. To gain insight into the repression mechanisms, we have performed a transgenic screening for mutants that express SSPs in leaves. Here we show that mutations of BRAHMA (BRM), a SNF2 chromatin remodelling ATPase, cause the ectopic expression of a subset of SSPs and other embryogenesis related genes in leaf tissue. Consistent with the notion that such SNF2-like ATPases form protein complexes in vivo, we observed similar phenotypes for mutations of AtSWI3C, a BRM interacting partner, and BSH, a SNF5 homolog and essential SWI/SNF subunit. Further, we present chromatin immunoprecipitation evidence that BRM is recruited to the promoters of a number of embryogenesis genes including the 2S genes, which are expressed/elevated in brm leaves. Consistent with its role in nucleosome remodelling, BRM appears to control the chromatin structure of the At2S2 promoter. These results show that a BRM-containing chromatin remodelling ATPase complex is involved in the direct repression of SSPs in leaf tissue.

Publication Title

The Arabidopsis BRAHMA chromatin-remodeling ATPase is involved in repression of seed maturation genes in leaves.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact