refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 143 results
Sort by

Filters

Technology

Platform

accession-icon GSE57141
Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The NF1 tumor suppressor encodes a RAS GTPase-Activating Protein (RasGAP). Accordingly, deregulated RAS signaling underlies the pathogenesis of NF1-mutant cancers. However, while various RAS effector pathways have been shown to function in these tumors, it is currently unclear which specific proteins within these broad signaling pathways represent optimal therapeutic targets. Here we identify mTORC1 as the key PI3K pathway component in NF1-mutant nervous system malignancies and conversely show that mTORC2 and AKT are dispensable. We also report that combined mTORC1/MEK inhibition is required to promote tumor regression in animal models, but only when the inhibition of both pathways is sustained. Transcriptional profiling studies were also used to establish a predictive signature of effective mTORC1/MEK inhibition in vivo. Within this signature, we unexpectedly found that the glucose transporter gene, GLUT1, was potently suppressed but only when both pathways were effectively inhibited. Moreover, unlike VHL and LKB1 mutant cancers, reduction of 18F-FDG uptake measured by FDG-PET required the effective suppression of both mTORC1 and MEK. Together these studies identify optimal and sub-optimal therapeutic targets in NF1-mutant malignancies and define a non-invasive means of measuring combined mTORC1/MEK inhibition in vivo, which can be readily incorporated into clinical trials.

Publication Title

Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE84205
mTOR and HDAC inhibitors converge on the TXNIP/thioredoxin pathway to cause catastrophic oxidative stress and regression of RAS-driven tumors
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

mTOR and HDAC inhibitors induce cell death of malignant peripheral nerve sheath tumors (MPNSTs) in vitro, and in vivo

Publication Title

mTOR and HDAC Inhibitors Converge on the TXNIP/Thioredoxin Pathway to Cause Catastrophic Oxidative Stress and Regression of RAS-Driven Tumors.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE6697
Expression data from spec. transcriptional activity of primary mouse embryonic fibroblasts (MEF) in response to serum.
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Current methods to analyze gene expression measure steady-state levels of mRNA. In order to specifically analyze mRNA transcription, a technique has been developed that can be applied in-vivo. The technique is referred with the acronym NIAC-NTR (Non Invasive Application and Capture of Newly Transcribed RNA). This method makes use of the cellular pyrimidine salvage pathway and is based on affinity-chromatographic isolation of thiolated mRNA. When combined with data on mRNA steady-state levels, this method is able to assess the relative contributions of mRNA synthesis and degradation/stabilization. It overcomes limitations associated with currently available methods such as mechanistic intervention that disrupts cellular physiology, or the inability to apply the techniques in-vivo. The method has been applied to a model of serum response of cultured primary mouse embryonic fibroblasts.

Publication Title

Microarray analysis of newly synthesized RNA in cells and animals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6698
Expression data from spec. transcrip. activity of contralateral mouse kidneys in response to Ischemia-Reperfusion-Injury
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Current methods to analyze gene expression measure steady-state levels of mRNA. In order to specifically analyze mRNA transcription, a technique has been developed that can be applied in-vivo in intact cells and animals. The technique is referred with the acronym NIAC-NTR (Non Invasive Application and Capture of Newly Transcribed RNA). This method makes use of the cellular pyrimidine salvage pathway and is based on affinity-chromatographic isolation of thiolated mRNA. When combined with data on mRNA steady-state levels, this method is able to assess the relative contributions of mRNA synthesis and degradation/stabilization. It overcomes limitations associated with currently available methods such as mechanistic intervention that disrupts cellular physiology, or the inability to apply the techniques in-vivo. The method was applied to study renal ischemia reperfusion injury, demonstrating its applicability for whole organs in-vivo.

Publication Title

Microarray analysis of newly synthesized RNA in cells and animals.

Sample Metadata Fields

Age

View Samples
accession-icon GSE37700
Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE37699
Aberrant ERK signaling causes resistance to EGFR kinase inhibitors
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The clinical efficacy of EGFR kinase inhibitors is limited by the development of drug resistance. The irreversible EGFR kinase inhibitor WZ4002 is effective against the most common mechanism of drug resistance mediated by the EGFR T790M mutation. Here we show that in multiple complementary models harboring EGFR T790M, resistance to WZ4002 develops through aberrant activation of ERK signaling caused by either an amplification of MAPK1 or by downregulation of negative regulators of ERK signaling. Inhibition of MEK or ERK restores sensitivity to WZ4002, and the combination of WZ4002 and a MEK inhibitor prevents the emergence of drug resistance. The WZ4002 resistant MAPK1 amplified cells also demonstrate an increase both in EGFR internalization and a decrease in sensitivity to cytotoxic chemotherapy compared to the parental counterparts. Our findings provide insights into mechanisms of drug resistance to EGFR kinase inhibitors and highlight rational combination therapies that should be evaluated in clinical trials.

Publication Title

Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP189905
Mutations in RABL3 Alter KRAS Prenylation and are Associated with Hereditary Pancreatic Cancer
  • organism-icon Danio rerio
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with limited treatment options. Familial predisposition to PDAC occurs in ~10% of cases, but causative genes have not been identified in most families. Uncovering the genetic basis for PDAC susceptibility has immediate prognostic implications for families and can provide mechanistic clues to PDAC pathogenesis. Here, we perform whole-genome sequence analysis in a family with multiple cases of PDAC and identify a germline nonsense mutation in the member of RAS oncogene family-like 3 (RABL3) gene never before directly associated with hereditary cancer. The truncated mutant allele (RABL3_p.S36*) co-segregates with cancer occurrence. To evaluate the contribution of the RABL3 mutant allele in hereditary cancer, we generated rabl3 heterozygous mutant zebrafish and found increased susceptibility to cancer formation in two independent cancer models. Unbiased approaches implicate RABL3 in RAS pathway regulation: the transcriptome of juvenile rabl3 mutants reveals a KRAS upregulation signature, and affinity-purification mass spectrometry for proteins associated with RABL3 or RABL3_p.S36* identifies Rap1 GTPase-GDP Dissociation Stimulator 1 (RAP1GDS1, SmgGDS), a chaperone that regulates prenylation of RAS GTPases. Indeed, we find that RABL3_p.S36* accelerates KRAS prenylation and requires RAS proteins to promote cell proliferation. Furthermore, rabl3 homozygous mutant zebrafish develop severe craniofacial, skeletal, and growth defects consistent with human RASopathies, and these defects are partially rescued with the MEK inhibitor trametinib. Finally, we identify additional germline mutations in RABL3 that impact RAS activity in vivo and have a significant burden in a cohort of patients with developmental disorders, suggesting a role in undiagnosed RASopathies. Moreover, RABL3 is upregulated in multiple human PDAC cell lines and knockdown abrogates proliferation, consistent with a broader role for RABL3 in PDAC. Our studies identify the RABL3 mutation as a new target for genetic testing in cancer families and uncover a novel mechanism for dysregulated RAS activity in development and cancer. Overall design: WT (4 replicates) and homozygous rabl3-TR41 mutant (3 replicates) larval zebrafish at 21 days of age.

Publication Title

Mutations in RABL3 alter KRAS prenylation and are associated with hereditary pancreatic cancer.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP136693
Celll type specific gene expression from healthy human lung tissue infected with mycobacterium tuberculosis (ILC).
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

We have investigated the initial responses in human lung tissue explants to Mtb infection, focusing primarily on gene expression patterns in different tissue resident innate cell types Overall design: Cells sorted from uninfected and infected lung tissue (24 hrs. post infection)

Publication Title

<i>Mycobacterium tuberculosis</i> Invasion of the Human Lung: First Contact.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP136694
Celll type specific gene expression from healthy human lung tissue infected with mycobacterium tuberculosis (innate).
  • organism-icon Homo sapiens
  • sample-icon 92 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

We have investigated the initial responses in human lung tissue explants to Mtb infection, focusing primarily on gene expression patterns in different tissue resident innate cell types Overall design: Cells sorted from uninfected and infected lung tissue (24 hrs. post infection)

Publication Title

<i>Mycobacterium tuberculosis</i> Invasion of the Human Lung: First Contact.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE82051
Extracellular vesicle role in Chronic Lymphocytic Leukemia B-cells defined by microarray analysis
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Interactions between Chronic Lymphocytic Leukemia B-cells (CLL B-cells) and the microenvironment (ME) play a major function in the physiopathology of CLL. Extracellular vesicles (EVs) (composed of exosomes and microparticles) have been shown to play an important role in cell communication. EVs, purified by ultracentrifugation from bone marrow mesenchymal stromal cells (BM-MSC) culture, were added to CLL B-cells. Microarray study highlighted 805 differentially expressed genes between CLL-B-cells cultured with and without EVs. Of these, CCL3/4, EGR1/2/3, MYC (involved in BCR pathway) were increased while pro-apoptotic genes like HRK were decreased. We showed for the first time the potential of EVs alone to induce gene expression modifications in CLL B-cell, notably in BCR and apoptosis pathways. We concluded that a substantial part of communication between CLL B-cells and BM-ME is mediated through EV.

Publication Title

Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact