Anoxia induces several heat shock proteins and a heat pre-treatment can acclimatize Arabidopsis seedlings to a subsequent anoxic treatment. In this work we analyzed the response of Arabidopsis seedlings to anoxia, heat and a combined heat+anoxia stress. A significant overlapping between the anoxic and heat shock responses has been observed by whole-genome microarray analysis.
The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis.
Age, Treatment
View SamplesThis dataset was used to establish whole blood transcriptional modules (n=260) that represent groups of coordinately expressed transcripts that exhibit altered abundance within individual datasets or across multiple datasets. This modular framework was generated to reduce the dimensionality of whole blood microarray data processed on the Illumina Beadchip platform yielding data-driven transcriptional modules with biologic meaning.
Interferon signature in the blood in inflammatory common variable immune deficiency.
Disease
View SamplesTriple negative breast cancer (TNBC) represents a challenging tumor type due to their poor prognosis and limited treatment options. It is well recognize that clinical and molecular heterogeneity of TNBC is driven in part by mRNA and lncRNAs. To stratify TNBCs, we profiled mRNAs and lncRNA in 158 adjuvant TNBC tumors using an Affymetrix microarray platform. Lehmann clustering analysis allowed us to identify TNBC subtypes featuring unique lncRNA expression patterns, disease free and overall survival rates and particular gene ontology enrichments (performed with GSEA algorithm).
Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer.
Specimen part
View SamplesTriple negative breast cancer (TNBC) represents a challenging tumor type due to their poor prognosis and limited treatment options. It is well recognize that clinical and molecular heterogeneity of TNBC is driven in part by mRNA and lncRNAs. To stratify TNBCs, we profiled mRNAs and lncRNA in 158 adjuvant TNBC tumors using an Affymetrix microarray platform. Lehmann clustering analysis allowed us to identify TNBC subtypes featuring unique lncRNA expression patterns, disease free and overall survival rates and particular gene ontology enrichments (performed with GSEA algorithm).
Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation.
Specimen part, Treatment
View SamplesTumor microenvironment coevolves with and simultaneously sustains cancer progression. Reactive fibroblasts found in prostate cancer (PCa), known as cancer associated fibroblasts (CAF), have been indeed shown to fuel tumor development and metastasis by mutually interacting with PCa cells. Little is known about the molecular mechanisms that lead to activation of CAFs from tissue-resident fibroblasts, circulating marrow-derived fibroblast progenitors or mesenchymal stem cells. Through integrated gene and microRNA expression profiling, here we showed that transcriptome of CAFs isolated from prostate tumors strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus confirming the capability of the cytokine to promote acquisition of an activated and cancer-promoting phenotype, and, for the first time, proving that IL6 is able per se to induce all the complex transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGF-related signatures, indicating that either signal, depending on the context, tumor stage and etiology, may concur to fibroblast activation. Our analyses also highlighted pathways relevant for induction of reactive stroma, including genes the role of which in fibroblast activation is still to be explored. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, in this study we provided insights on the molecular mechanisms driving fibroblast activation in prostate cancer, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment. Tumor microenvironment coevolves with and simultaneously sustains cancer progression. Reactive fibroblasts found in prostate cancer (PCa), known as cancer associated fibroblasts (CAF), have been indeed shown to fuel tumor development and metastasis by mutually interacting with PCa cells. Little is known about the molecular mechanisms that lead to activation of CAFs from tissue-resident fibroblasts, circulating marrow-derived fibroblast progenitors or mesenchymal stem cells. Through integrated gene and microRNA expression profiling, here we showed that transcriptome of CAFs isolated from prostate tumors strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus confirming the capability of the cytokine to promote acquisition of an activated and cancer-promoting phenotype, and, for the first time, proving that IL6 is able per se to induce all the complex transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGF-related signatures, indicating that either signal, depending on the context, tumor stage and etiology, may concur to fibroblast activation. Our analyses also highlighted pathways relevant for induction of reactive stroma, including genes the role of which in fibroblast activation is still to be explored. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, in this study we provided insights on the molecular mechanisms driving fibroblast activation in prostate cancer, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment. Tumor microenvironment coevolves with and simultaneously sustains cancer progression. Reactive fibroblasts found in prostate cancer (PCa), known as cancer associated fibroblasts (CAF), have been indeed shown to fuel tumor development and metastasis by mutually interacting with PCa cells. Little is known about the molecular mechanisms that lead to activation of CAFs from tissue-resident fibroblasts, circulating marrow-derived fibroblast progenitors or mesenchymal stem cells. Through integrated gene and microRNA expression profiling, here we showed that transcriptome of CAFs isolated from prostate tumors strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus confirming the capability of the cytokine to promote acquisition of an activated and cancer-promoting phenotype, and, for the first time, proving that IL6 is able per se to induce all the complex transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGF-related signatures, indicating that either signal, depending on the context, tumor stage and etiology, may concur to fibroblast activation. Our analyses also highlighted pathways relevant for induction of reactive stroma, including genes the role of which in fibroblast activation is still to be explored. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, in this study we provided insights on the molecular mechanisms driving fibroblast activation in prostate cancer, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment.
Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation.
Specimen part, Treatment
View SamplesEffects of IL-4 on CD8 T cells functions are largely unknown. IL-4 induces survival and proliferation of CD8 T cells, but several studies suggest that IL-4 could also affect several functions of CD8 T cells such as cytotoxicity. Our team has shown that IL-4 repress the expression of Ccl5 in vitro.
Negative regulation of NKG2D expression by IL-4 in memory CD8 T cells.
Specimen part, Treatment
View SamplesDemethyl fructiculin A is a diterpenoid quinone component of the exudates from Salvia corrugata (SCO-1) leafes. SCO-1 was recently reported to induce anoikis in mammalian cell lines via a molecular mechanism involving the presence of the membrane scavenging receptor CD36. However, experiments performed with cells lacking CD36, showed that SCO-1 was able to induce apoptosis also via alternate pathways. To contribute to a better characterization of the molecular mechanisms underlining the cytotoxic activity of SCO-1, we decided to pursue an unbiased pharmacogenomic approach by generating the gene expression profile of GBM TICs subjected to the administration of SCO-1 and comparing it with that of control cells exposed to the solvent. With this strategy we hypothesized to highlight those pathways and biological processes unlashed by SCO-1.
Demethyl fruticulin A (SCO-1) causes apoptosis by inducing reactive oxygen species in mitochondria.
Time
View SamplesAlternative splicing is a key event to human transcriptome and proteome diversity and complexity. Recent evidence suggests that pancreatic cancer might possess particular patterns of splice variation that influence the function of individual genes contributing to tumour progression in this disease. The identification of new pancreatic cancer-associated splice variants would offer opportunities for novel diagnostics and potentially also represent novel therapeutic targets.
Splice variants as novel targets in pancreatic ductal adenocarcinoma.
Sex, Age, Specimen part
View SamplesWe performed microarray analysis to evaluate differences in the transcriptome of type 2 diabetic human islets compared to non-diabetic islet samples.
Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells.
Sex, Age, Specimen part, Disease, Disease stage
View Samples