Induced pluripotent stem cells (iPSCs) are a promising source for cell-based therapy to treat Parkinson's disease (PD), in which midbrain dopaminegic (DA) neurons progressively degenerate. However, long-term analysis of human iPSC-derived DA neurons in primate PD models has never been performed. Here we show that DA progenitor cells derived from iPSCs of both healthy individuals and PD patients survived well in the brains of PD model primates and improved animal behavior. Magnetic resonance and positron emission tomography were useful to monitor the survival and function of the DA neurons. Score-based and video-recording analyses revealed an increase in spontaneous movement of the monkeys after transplantation. Histological studies showed that the mature DA neurons extended dense neurites into the host striatum. In addition, we never observed tumor formation for two years. Thus, this preclinical study using primate models indicates that human iPSC-derived DA progenitors are clinically applicable to treat PD patients.
Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model.
Specimen part
View SamplesA toxicogenomic analysis from liver of different pharmacological active coumarins (mammea A/BA+A/BB 3:1 and soulatrolide ) was performed on mice treated (20mg/kg/daily) for a whole week to evaluate if such compounds possess or could develop a hazardous profile on liver.
Toxicogenomic analysis of pharmacological active coumarins isolated from Calophyllum brasiliense.
Sex, Specimen part, Treatment
View SamplesExpression of the proendocrine gene neurogenin 3 (Ngn3) is required for the development of pancreatic islets. In order to better characterize the molecular events regulated by Ngn3 during development, we have determined the expression profile of differentiating murine embryonic stem cells (mESCs) uniformly induced to overexpress Ngn3. An ESC line was created that allows for the induction of Ngn3 by adding doxycycline (Dox) to the culture medium. Genome-wide microarray analysis was performed to identify genes regulated by Ngn3 in a variety of both undifferentiated and differentiated conditions. Characterization of pancreatic developmental markers during embryoid body (EB) formation revealed an optimum context for Ngn3 induction. Neuroendocrine genes including neurogenic differentiation 1 (NeuroD1) and single minded 1 (Sim1) were found to be significantly upregulated. Genes regulated by Ngn3 independent of the context were analyzed using systematic gene ontology tools and revealed Notch signaling as the most significantly regulated signaling pathway (p=0.009). This result is consistent with the hypothesis that Ngn3 expression makes the cell competent for Notch signaling to be activated and conversely, more sensitive to Notch signaling inhibition. Indeed, EBs induced to express Ngn3 were significantly more sensitive to gamma-secretase inhibitor-mediated Notch signaling inhibition (p<0.0001). Moreover, we find that Ngn3 induction in differentiating ESCs results in significant increases in insulin, glucagon, and somatostatin transcription.
Differentiation of embryonic stem cells conditionally expressing neurogenin 3.
No sample metadata fields
View SamplesIn this experiment we compared total RNA from two commonly used choriocarcinoma cell lines, JEG3 and BeWo, to identify differentially expressed transcripts.
Microarray analysis of BeWo and JEG3 trophoblast cell lines: identification of differentially expressed transcripts.
No sample metadata fields
View SamplesWe describe a case of severe neonatal anemia with kernicterus due to compound heterozygosity for null mutations in KLF1, each inherited from asymptomatic parents. One of the mutations is novel. This is the first described case of a KLF1 null human. The phenotype of severe DAT-negative non-spherocytic hemolytic anaemia (NSHA), jaundice, hepato-splenomegaly, and marked erythroblastosis is more severe than that present in CDA type IV due to dominant mutations in the second zinc-finger of KLF1. There was a very high level of HbF expression into childhood (>70%), consistent with a key role for KLF1 in human hemoglobin switching. We performed RNA-seq on circulating erythroblasts and found human KLF1 acts like mouse Klf1 to coordinate expression of many genes required to build a red cell including those encoding globins, cytoskeletal components, AHSP, heme synthesis enzymes, cell cycle regulators, and blood group antigens. We identify novel KLF1 target genes including KIF23 and KIF11 which are required for proper cytokinesis. We also identify new roles for KLF1 in autophagy, global transcriptional control and RNA splicing. We suggest loss of KLF1 should be considered in otherwise unexplained cases of severe neonatal NSHA or hydrops fetalis. Overall design: mRNA sequencing on peripheral blood from a family trio (mother, father and proband) where parents were asymptomatic and proband had severe neonatal anemia.
KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome.
No sample metadata fields
View SamplesRecent studies of cortical pathology in secondary progressive multiple sclerosis have shown that a more severe clinical course and the presence of extended subpial grey matter lesions with significant neuronal/glial loss and microglial activation are associated with meningeal inflammation, including the presence of lymphoid-like structures in the subarachnoid space in a proportion of cases. To investigate the molecular consequences of pro-inflammatory and cytotoxic molecules diffusing from the meninges into the underlying grey matter, we carried out gene expression profiling analysis of the motor cortex from 20 post-mortem multiple sclerosis brains with and without substantial meningeal inflammation and 10 non-neurological controls. Gene expression profiling of grey matter lesions and normal appearing grey matter not only confirmed the substantial pathological cell changes, which were greatest in multiple sclerosis cases with increased meningeal inflammation, but also demonstrated the upregulation of multiple genes/pathways associated with the inflammatory response. In particular, genes involved in tumour necrosis factor (TNF) signalling were significantly deregulated in MS cases compared to controls.
Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis.
Specimen part, Disease, Disease stage
View SamplesWe identified distict mesodermal sub-populations based on Endoglin (Eng) and Flk1 expression in Brachyury (Bry) positive cells. By using whole-transcriptome analysis, we further characterized these populations and how they changed when Wnt pathway is inhibited Overall design: Reaggregates mRNA profiles of unsorted, Flk1+ Eng+, and Flk1- Eng+ samples were generated by deep sequencing, in triplicate , using Ilumina.
Endoglin integrates BMP and Wnt signalling to induce haematopoiesis through JDP2.
Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Restriction of intestinal stem cell expansion and the regenerative response by YAP.
Specimen part, Treatment
View SamplesThe expression was designed to determine whether exposure to CSF1-Fc has any effect on liver-specific gene expression in pigs.
Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs.
Specimen part
View SamplesRSpondin1 adenovirus was administered to mice and intestine was isolated for expression analysis 1 week later.
Restriction of intestinal stem cell expansion and the regenerative response by YAP.
Specimen part, Treatment
View Samples