This SuperSeries is composed of the SubSeries listed below.
Identification of key regions and genes important in the pathogenesis of sezary syndrome by combining genomic and expression microarrays.
Specimen part, Disease
View SamplesThis study used tumour and paired normal samples from 28 Szary Syndrome (SS) patients to define recurrent regions of chromosomal aberrations. Our data identified recurrent losses of 17p13.2-p11.2 and 10p12.1-q26.3 occurring in 71 and 68% of cases respectively; common gains were detected for 17p11.2-q25.3 (64%) and chromosome 8/8q (50%). Moreover, we identified novel genomic lesions recurring in more than 30% of tumours: loss of 9q13-q21.33 and gain of 10p15.3-10p12.2. In the Szary Syndrome cases analysed, we could find several small and few large Uniparental Disomies involving interstitial or telomeric regions of LOH occurring mainly for chromosome 10 and to a lesser extent for chromosome 9 and 17. In the attempt to correlate Copy Number data and clinical parameters we find a relationship between complex pattern of chromosomal aberrations, involving at least three recurrent Copy Number alterations, and shorter survival. Integrating mapping and transcriptional data we were able to identify a total of 113 deregulated transcripts in aberrant chromosomal regions that included cancer related genes such as members of the NF-kB pathway (BAG4, BTRC, NKIRAS2, PSMD3, TRAF2) that might explain its constitutive activation in CTCL. Matching this list of genes with those discriminating patients with different survival times we identify several common candidates that might exert critical roles in Szary Syndrome, like BUB3 and PIP5K1B.
Identification of key regions and genes important in the pathogenesis of sezary syndrome by combining genomic and expression microarrays.
Specimen part, Disease
View SamplesWe aim to identify genes differentially expressed between mouse WT and COUP-TFI_Nex-Cre mutant cortices.
Postmitotic control of sensory area specification during neocortical development.
Specimen part
View SamplesThe goal of this gene expression profiling experiment was to identify the entire set of transcription factors expressed during late pupal wing development (~80h APF) when pigmentation genes are expressed
Emergence and diversification of fly pigmentation through evolution of a gene regulatory module.
Specimen part
View SamplesSolid cancers develop within a supportive microenvironment that promotes tumor formation and continued growth through the elaboration of mitogens and chemokines. Within these tumors, monocytes (macrophages and microglia) represent rich sources of these stromal factors. Leveraging a genetically-engineered mouse model of neurofibromatosis type 1 (NF1) low-grade brain tumor (optic glioma), previous studies have demonstrated that microglia are important for glioma formation and maintenance. To identify the tumor-associated microglial factors that support glioma growth (gliomagens), we employed a comprehensive large scale discovery effort using optimized advanced RNA-sequencing methods. Candidate gliomagens were prioritized to identify potential secreted or membrane-bound proteins, which were next validated by quantitative RT-PCR and RNA FISH following minocycline-mediated microglial inactivation in vivo. Using these selection criteria, Ccl5 was identified as a highly expressed chemokine in both genetically engineered Nf1 mouse and human optic gliomas. As a candidate gliomagen, recombinant Ccl5 increased Nf1-deficient optic nerve astrocyte growth in vitro. Importantly, consistent with its critical role in maintaining tumor growth, Ccl5 inhibition with neutralizing antibodies reduced Nf1 mouse optic glioma growth in vivo. Collectively, these findings establish Ccl5 as critical stromal growth factor in low-grade glioma maintenance relevant to future microglia-targeted therapies for brain tumors. Overall design: Nf1 optic glioma associated microglia from mice were flow sorted. Upregulated genes of glioma associated microglia were verified and further examined.
RNA Sequencing of Tumor-Associated Microglia Reveals Ccl5 as a Stromal Chemokine Critical for Neurofibromatosis-1 Glioma Growth.
No sample metadata fields
View SamplesInnovative approaches combining regulatory networks and genomic data are needed to extract pertinent biological informations to a better understanding of complex disease such as cancer and improve identi cation of entities leading to potential new therapeutic avenues. In this study, we confronted an automatic generated regulatory network with gene expression pro les (GEP) from a large cohort of patients with multiple myeloma (MM) and normal individuals with a causality reasonning method based of graph coloring to identify keynodes. Due to this causality reasoning, it is possible to infer proteins state from these GEP. Also, our method is able to simulate the impact of the perturbation of a node in this regulatory network to identify therapeutic targets. This method allowed us to nd that JUN/FOS and FOXM1, known in MM, and their inhibition as speci c to large group of patients with MM. Moreover, we associated the inhibition of FOXM1 activity with good prognosis, suggesting the inhibition of FOXM1 activity could be a survival marker. Finally, if JUN/FOS activation seems to be a way to strongly perturb the regulatory network in view of GEP, our result suggests the activation of FOXM1 could be interesting way to perturb some sub-group of profiles.
Logic programming reveals alteration of key transcription factors in multiple myeloma.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy.
Specimen part
View SamplesSpinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease and is the second most common genetic disorder leading to death in childhood. Motoneurons derived from induced pluripotent stem cells (iPS cells) obtained by reprogramming SMA patient and his healthy father fibroblasts, and genetically corrected SMA-iPSC obtained converting SMN2 into SMN1 with target gene correction (TGC), were used to study gene expression and splicing events linked to pathogenetic mechanisms.
Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic impact of transient low-dose decitabine treatment on primary AML cells.
Sex, Age, Specimen part, Disease, Treatment
View SamplesAcute myeloid leukemia (AML), and other myeloid malignancies, are frequently treated with hypomethylating agents like decitabine. Alterations in the epigenome, induced by decitabine, are likely to result in gene expression changes. The effects of decitabine have not been systemically studied using primary AML samples.
Genomic impact of transient low-dose decitabine treatment on primary AML cells.
Specimen part, Disease, Treatment
View Samples