We measured gene expression in the adrenal glands of the Spontaneously Hypertensive Rat (SHR) and Wistar-Kyoto rat (WKY) using Affymetrix RG-U34A GeneChips. All rats were aged-matched at 4-weeks. The rats were obtained from the colonies at the Univeristy of California San Diego, La Jolla, CA.
Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension.
No sample metadata fields
View SamplesWe performed Affymetrix MG-U74Av2 GeneChip experiements on mRNA from the adrenal glands of the BPH hypertensive and BPL hypotensive mouse strains. All mice were aged-matched at 5 weeks. We obtained the mice from Jackson Laboratories, Bar Harbor, ME.
Neuroendocrine transcriptome in genetic hypertension: multiple changes in diverse adrenal physiological systems.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Global metabolic consequences of the chromogranin A-null model of hypertension: transcriptomic detection, pathway identification, and experimental verification.
Sex, Specimen part
View SamplesThe objective of the experiment is to determine the genes differentially expressed in the liver of the chromogranin A knockout mouse (Mahapatra et al., 2005).
Global metabolic consequences of the chromogranin A-null model of hypertension: transcriptomic detection, pathway identification, and experimental verification.
Sex, Specimen part
View SamplesThe objective of the experiment is to determine the genes differentially expressed in the adrenal gland of the chromogranin A knockout mouse (Mahapatra et al., 2005).
Global metabolic consequences of the chromogranin A-null model of hypertension: transcriptomic detection, pathway identification, and experimental verification.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences.
Sex, Age, Specimen part, Treatment
View SamplesAcquisition of the intestinal microbiota begins at birth, and a stable microbial community develops from a succession of key organisms. Disruption of the microbiota during maturation by low-dose antibiotic exposure can alter host metabolism and adiposity. We now show that low-dose penicillin (LDP), delivered from birth, induces metabolic alterations and affects ileal expression of genes involved in immunity. LDP that is limited to early life transiently perturbs the microbiota, which is sufficient to induce sustained effects on body composition, indicating that microbiota interactions in infancy may be critical determinants of long-term host metabolic effects. In addition, LDP enhances the effect of high-fat diet induced obesity. The growth promotion phenotype is transferrable to germ-free hosts by LDP-selected microbiota, showing that the altered microbiota, not antibiotics per se, play a causal role. These studies characterize important variables in early-life microbe-host metabolic interaction and identify several taxa consistently linked with metabolic alterations. Overall design: Male and female mice were exposed to low-dose penicillin from birth. In a second experiment, microbiota from female control and LDP mice was transferred to 3-week old female germ-free mice. Livers were collected at 8 weeks of age, RNA was extracted, and transcriptional differences were measured by RNAseq.
Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences.
No sample metadata fields
View SamplesAcquisition of the intestinal microbiota begins at birth, and a stable microbial community develops from a succession of key organisms. Disruption of the microbiota during maturation by low-dose antibiotic exposure can alter host metabolism and adiposity. We now show that low-dose penicillin (LDP), delivered from birth, induces metabolic alterations and affects ileal expression of genes involved in immunity. LDP that is limited to early life transiently perturbs the microbiota, which is sufficient to induce sustained effects on body composition, indicating that microbiota interactions in infancy may be critical determinants of long-term host metabolic effects. In addition, LDP enhances the effect of high-fat diet induced obesity. The growth promotion phenotype is transferrable to germ-free hosts by LDP-selected microbiota, showing that the altered microbiota, not antibiotics per se, play a causal role. These studies characterize important variables in early-life microbe-host metabolic interaction and identify several taxa consistently linked with metabolic alterations.
Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences.
Sex, Age, Treatment
View SamplesAcquisition of the intestinal microbiota begins at birth, and a stable microbial community develops from a succession of key organisms. Disruption of the microbiota during maturation by low-dose antibiotic exposure can alter host metabolism and adiposity. We now show that low-dose penicillin (LDP), delivered from birth, induces metabolic alterations and affects ileal expression of genes involved in immunity. LDP that is limited to early life transiently perturbs the microbiota, which is sufficient to induce sustained effects on body composition, indicating that microbiota interactions in infancy may be critical determinants of long-term host metabolic effects. In addition, LDP enhances the effect of high-fat diet induced obesity. The growth promotion phenotype is transferrable to germ-free hosts by LDP-selected microbiota, showing that the altered microbiota, not antibiotics per se, play a causal role. These studies characterize important variables in early-life microbe-host metabolic interaction and identify several taxa consistently linked with metabolic alterations.
Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences.
Sex, Age, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation.
Time
View Samples