refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 204 results
Sort by

Filters

Technology

Platform

accession-icon SRP059057
Transcriptome analysis of CD4+ T cells reveals imprint of BACH2 and IFN? regulation
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We used RNA sequencing to profile over 70 transcriptomes of CD4+ T cells, a cell type crucial for Coeliac Disease CD pathogenesis, in both stimulated and resting samples from individuals with CD and unaffected controls The data gave us the opportunity to (i) compare gene expression between cases and controls; (ii) specifically assess whether genes that have been genetically associated with the disease were being DE; (iii) and also look for known and novel aspects of pathogenesis in the transcriptome of this specific cellular compartment. Overall design: RNA sequencing was performed on mRNA extracted from the CD4+ T cells of 15 Coeliac patients and 11 Controls that had been stimulated with anti-CD3/anti-CD28, PMA and left unstimulated. In total we sequenced 74 transcriptome samples using 50bp reads on an Illumina HiSeqâ„¢ 2000.

Publication Title

Transcriptome Analysis of CD4+ T Cells in Coeliac Disease Reveals Imprint of BACH2 and IFNγ Regulation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE146958
Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth
  • organism-icon Rattus norvegicus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE146883
Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth (injured sciatic nerve microarray data)
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are essential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, including known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesenchymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons. These data therefore identify an unexpected paracrine role for nerve mesenchymal cells and suggest that multiple cell types contribute to creating a highly pro-growth environment for peripheral axons.

Publication Title

Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE146957
Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth (sensory neuron microarray data)
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are essential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, including known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesenchymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons. These data therefore identify an unexpected paracrine role for nerve mesenchymal cells and suggest that multiple cell types contribute to creating a highly pro-growth environment for peripheral axons.

Publication Title

Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE146898
Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth (sympathetic neuron microarray data)
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are essential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, including known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesenchymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons. These data therefore identify an unexpected paracrine role for nerve mesenchymal cells and suggest that multiple cell types contribute to creating a highly pro-growth environment for peripheral axons.

Publication Title

Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE81704
Nerve-derived Schwann cell precursors, acting in a paracrine fashion, are essential for mammalian digit tip regeneration
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dedifferentiated Schwann Cell Precursors Secreting Paracrine Factors Are Required for Regeneration of the Mammalian Digit Tip.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE81697
Nerve-derived Schwann cell precursors, acting in a paracrine fashion, are essential for mammalian digit tip regeneration [MOUSE]
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Multi-tissue regenerative capacity is lost in adult mammals with the exception of the distal digit, which regenerates via largely-uncharacterized mechanisms. Here, we demonstrate that following adult mouse distal digit removal, nerve-associated Schwann cell precursors (N-SCPs) dedifferentiate and secrete growth factors that promote expansion of the blastema and digit regeneration. Specifically, when N-SCPs were dysregulated or ablated, mesenchymal precursor proliferation in the blastema was decreased, nail and bone regeneration were impaired, and regeneration could be rescued by transplantation of exogenous N-SCPs. We show that N-SCPs secreted factors that promoted self-renewal of mesenchymal precursors, and we used transcriptomic and proteomic analysis to define candidate factors. Two of these, oncostatin M (OSM) and PDGF-AA, were made by N-SCPs in the regenerating digit, and rescued the deficits in regeneration caused by loss of N-SCPs due to denervation. Since nerves innervate every peripheral tissue, these results have broad implications for mammalian tissue repair and regeneration.

Publication Title

Dedifferentiated Schwann Cell Precursors Secreting Paracrine Factors Are Required for Regeneration of the Mammalian Digit Tip.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE81703
Nerve-derived Schwann cell precursors, acting in a paracrine fashion, are essential for mammalian digit tip regeneration [RAT]
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Multi-tissue regenerative capacity is lost in adult mammals with the exception of the distal digit, which regenerates via largely-uncharacterized mechanisms. Here, we demonstrate that following adult mouse distal digit removal, nerve-associated Schwann cell precursors (N-SCPs) dedifferentiate and secrete growth factors that promote expansion of the blastema and digit regeneration. Specifically, when N-SCPs were dysregulated or ablated, mesenchymal precursor proliferation in the blastema was decreased, nail and bone regeneration were impaired, and regeneration could be rescued by transplantation of exogenous N-SCPs. We show that N-SCPs secreted factors that promoted self-renewal of mesenchymal precursors, and we used transcriptomic and proteomic analysis to define candidate factors. Two of these, oncostatin M (OSM) and PDGF-AA, were made by N-SCPs in the regenerating digit, and rescued the deficits in regeneration caused by loss of N-SCPs due to denervation. Since nerves innervate every peripheral tissue, these results have broad implications for mammalian tissue repair and regeneration.

Publication Title

Dedifferentiated Schwann Cell Precursors Secreting Paracrine Factors Are Required for Regeneration of the Mammalian Digit Tip.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE1675
SHR and WKY rat adrenal glands
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

We measured gene expression in the adrenal glands of the Spontaneously Hypertensive Rat (SHR) and Wistar-Kyoto rat (WKY) using Affymetrix RG-U34A GeneChips. All rats were aged-matched at 4-weeks. The rats were obtained from the colonies at the Univeristy of California San Diego, La Jolla, CA.

Publication Title

Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1674
BPH and BPL mouse strain adrenal glands
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We performed Affymetrix MG-U74Av2 GeneChip experiements on mRNA from the adrenal glands of the BPH hypertensive and BPL hypotensive mouse strains. All mice were aged-matched at 5 weeks. We obtained the mice from Jackson Laboratories, Bar Harbor, ME.

Publication Title

Neuroendocrine transcriptome in genetic hypertension: multiple changes in diverse adrenal physiological systems.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact