Hematopoietic stem cells (HSCs) are located in the bone marrow in a specific microenvironment referred as the hematopoietic stem cell niche, where HSCs interact with a variety of stromal cells. Though several components of the stem cell niche have been identified, the regulatory mechanisms through which such components regulate the stem cell fate are still unknown. In order to address this issue, we investigated how osteoblasts (OBs) can affect the molecular and functional phenotype of HSCs and vice versa. Our data showed that CD34+ cells cultured with OBs give rise to higher total cell numbers, produce more CFU and maintain a higher percentage of CD34+CD38- cells compared to control culture. Moreover, clonogenic assay and long-term culture results showed that OBs enhance HSC differentiation towards the mono/macrophage lineage at the expense of the granulocytic and erythroid ones. Finally, GEP analysis allowed us to identify several cytokine-receptor networks, such as WNT pathway, and transcription factors, as TWIST1 and FOXC1, that could be activated by co-culture with OBs and could be responsible for the biological effects reported above.
Co-culture of hematopoietic stem/progenitor cells with human osteblasts favours mono/macrophage differentiation at the expense of the erythroid lineage.
Specimen part, Time
View SamplesThe BM-derived CD45+/Sca1+ cells are haematopoietic stem/progenitor cells that have the ability to circulate and migrate and engraft to the muscle tissue, and therefore they are of particular interest. Notably, these cells retain their haematopoietic potential, as revealed both by in vitro and in vivo assays; but they also acquire myogenic potential, as shown by their ability to participate in muscle regeneration. Whether, this latter remarkable ability is the result of the reprogramming of the BM-CD45+/Sca1+ cells and the activation of a myogenic molecular program within these cells, remains controversial. This study aims to clarify this aspect of the process, investigating the role of the muscle microenviroment and key myogenic transcription factors.
Bone marrow-derived hematopoietic cells undergo myogenic differentiation following a Pax-7 independent pathway.
No sample metadata fields
View SamplesExtracellular nucleotides are potent signaling molecules mediating cell-specific biological functions. We previously demonstrated that adenosine 5'-triphosphate (ATP) inhibits the proliferation while stimulating the migration, in vitro and in vivo, of human bone marrow-derived mesenchymal stem cells (BM-hMSC). Here, we investigated the effects of ATP on BM-hMSC differentiation capacity.
Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages.
Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Role of CD34 antigen in myeloid differentiation of human hematopoietic progenitor cells.
No sample metadata fields
View SamplesIn order to investigate the role of CD34 antigen in haematopoietic commitment, we overexpressed the human CD34 cDNA in human CD34+ cells by retroviral gene transfer.
Role of CD34 antigen in myeloid differentiation of human hematopoietic progenitor cells.
No sample metadata fields
View SamplesIn order to investigate the role of CD34 antigen in haematopoietic commitment, we silenced the CD34 gene expression in CD34+ stem/progenitor cells using a siRNA approach.
Role of CD34 antigen in myeloid differentiation of human hematopoietic progenitor cells.
No sample metadata fields
View SamplesWe used RNA-seq to define the gene expression profiles of intestinal stem cells (ISCs) expanded in Matrigel, degradable poly(ethylene) glycol (PEG) and non-degradable PEG matrices. Comparison of mRNA profiles between ISCs grown in Matrigel and non-degradable PEG show no major differences in expression of gene related to stemness, proliferation and signaling via the Wnt and Notch pathways. These results also show that ISC cultured in degradable PEG matrices upregulate stress- and inflammation-related genes compared with cells expanded in non-degradable PEG matrices. Overall design: mRNA profiles of ISCs cultured in the three types of matrices for 4 days were generated in triplicate
Designer matrices for intestinal stem cell and organoid culture.
Subject
View SamplesThe c-Myb transcription factor is highly expressed in immature hematopoietic cells and down-regulated during differentiation. To define the role of c-Myb in human hematopoietic lineage commitment, we studied the effects of its silencing during the commitment of human CD34+ Hematopoietic stem/progenitor cells. In CD34+ cells c-Myb silencing determined a cell cycle arrest in G0/G1 phase which strongly decreased the clonogenic efficiency, togheter with a reduction of erythroid colonies coupled with an increase of the macrophage and megakaryocyte ones. Moreover, morphological and flow cytometry data supported the preferential macrophage and megakaryocyte differentiation of c-Myb-silenced CD34+ cells. Taken together our data indicate that c-Myb is essential for the commitment along the erythroid and granulocyte lineages but not for the macrophage and megakaryocyte differentiation. Gene expression profiling of c-Myb-silenced CD34+ cells identified some potential c-Myb targets which can account for these effects, to study by Chromatin Immunoprecipitation and Luciferase Reporter Assay.
c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression.
No sample metadata fields
View SamplesThe c-Myb transcription factor is highly expressed in immature hematopoietic cells and down-regulated during differentiation. To define the role of c-Myb during the terminal differentiation of hematopoietic precursors, we studied the effects of its silencing in human primary CD14-myeloblasts, which maintain a granulo-monocyte differentiation bipotentiality. c-Myb-silenced myeloblasts were blocked in the G1 phase of the cell cycle at 24 hours post-nucleofection and subsequently were forced towards macrophage differentiation, as demonstrated by immunophenotypic and morphological analysis. Indeed, c-Myb-silenced CD14- cells differentiate to macrophage even after the treatment with ATRA 10-6 M, demonstrating that the c-Myb knockdown strongly impairs the ability of myeloblasts to differentiate to granulocytes. Gene expression profiling of c-Myb-silenced CD14- cells identified some potential c-Myb targets that can account for these effects.
c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression.
Specimen part, Time
View Samplesp63 mutations have been associated with several human hereditary disorders characterized by ectodermal dysplasia such as EEC syndrome, ADULT syndrome and AEC syndrome . The location and functional effects of the mutations that underlie these syndromes reveal a striking genotype-phenotype correlation. Unlike EEC and ADULT that result from missense mutations in the DNA-binding domain of p63, AEC is solely caused by missense mutations in the SAM domain of p63. We report a study on the TAp63a isoform, the first to be expressed during development of the embryonic epithelia, and on its naturally occurring Q540L mutant derived from an AEC patient. To assess the effects of the Q540L mutation, we generated stable cell lines expressing TAp63a wt, DeltaNp63 alpha or the TAp63 alpha-Q540L mutant protein and used them to systematically compare the cell growth regulatory activity of the mutant and wt p63 proteins and to generate, by microarray analysis, a comprehensive profile of differential gene expression. We found that the Q540L substitution impairs the transcriptional activity of TAp63a and causes misregulation of genes involved in the control of cell growth and epidermal differentiation.
The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity.
No sample metadata fields
View Samples