We report the application of RNA sequencing technology for high-throughput profiling of gene expression responses to human rhinovirus infection at 24 hours in air-liquid interface human airway epithelial cell cultures derived from 6 asthmatic and 6 non-asthmatic donors. RNA-seq analysis identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1), and novel ones that were identified for the first time in this study (e.g. CCRL1, CDHR3). We concluded that air liquid interface cultured human airway epithelial cells challenged with live HRV are a useful in vitro model for the study of rhinovirus induced asthma exacerbation, given that our findings are consistent with clinical data sets. Furthermore, our data suggest that abnormal airway epithelial structure and inflammatory signaling are important contributors to viral induced asthma exacerbation. Overall design: Differentiated air-liquid interface cultured human airway epithelial cell mRNA profiles from 6 asthmatic and 6 non-asthmatic donors after 24 hour treatment with either HRV or vehicle control were generated by deep sequencing, using Illumina HiSeq 2000.
Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Differential Methylation of H3K79 Reveals DOT1L Target Genes and Function in the Cerebellum In Vivo.
Specimen part
View SamplesDOT1L as methyltransferase of H3K79 is implicated in brian development. Here, we further defined DOT1L function in gene expression during cerebellar development using Microarrays. For that we generated Dot1l knockout mice using a Atoh-Cre driver line resulting in a Dot1l knockout within the cerebellum. The RNA of cerebellar tissue of the Dot1l knockout animals was thereby compared to controls. Additionally we compared the RNA levels of cultured CGNP and CGN samples treated with a DOT1L inhibitor versus DMSO treated cells. The data sets reveals potential new gene expression targets of DOT1L in vivo and in vitro, which ensure a correct development of the cerebellum.
Differential Methylation of H3K79 Reveals DOT1L Target Genes and Function in the Cerebellum In Vivo.
Specimen part
View Samplesp63 mutations have been associated with several human hereditary disorders characterized by ectodermal dysplasia such as EEC syndrome, ADULT syndrome and AEC syndrome . The location and functional effects of the mutations that underlie these syndromes reveal a striking genotype-phenotype correlation. Unlike EEC and ADULT that result from missense mutations in the DNA-binding domain of p63, AEC is solely caused by missense mutations in the SAM domain of p63. We report a study on the TAp63a isoform, the first to be expressed during development of the embryonic epithelia, and on its naturally occurring Q540L mutant derived from an AEC patient. To assess the effects of the Q540L mutation, we generated stable cell lines expressing TAp63a wt, DeltaNp63 alpha or the TAp63 alpha-Q540L mutant protein and used them to systematically compare the cell growth regulatory activity of the mutant and wt p63 proteins and to generate, by microarray analysis, a comprehensive profile of differential gene expression. We found that the Q540L substitution impairs the transcriptional activity of TAp63a and causes misregulation of genes involved in the control of cell growth and epidermal differentiation.
The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity.
No sample metadata fields
View SamplesGenome-wide association studies (GWAS) have identified dozens of genomic loci, whose single nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the biological functions of these common genetic variants and the mechanisms to increase disease risk are largely unknown. We integrated chromatin-IP coupled sequencing (ChIP-seq) and microarray expression profiling in the TMPRSS2-ERG gene rearrangement positive DuCaP cell model with the NHGRI GWAS PCa risk SNPs catalog, in an attempt to identify disease susceptibility SNPs localized within functional androgen receptor binding sites (ARBSs). Among the 48 GWAS index SNPs and 2,702 linked SNPs defined by the 1000G project 104 were found to be localized in the AR ChIP-seq peaks. Of these risk SNPs, rs11891426 T/G in the 7th intron of its host gene melanophilin (MLPH) was found located within a putative auxiliary ARE motif, which we found enriched in the neighborhood of canonical ARE motifs. Exchange of T to G attenuated the transcriptional activity of the MLPH-ARBS in a reporter gene assay. The expression of MLPH protein in tissue samples from prostate cancer patients was significantly lower in those with the G compared to the T allele. Moreover, a significant positive correlation of AR and MLPH protein expression levels was also confirmed in tissue samples. These results unravel a hidden link between AR and a functional PCa risk SNP rs11891426, whose allele alteration affects androgen regulation of its host gene MLPH. This study shows the power of integrative studies to pin down functional risk SNPs and justifies further investigations.
Putative Prostate Cancer Risk SNP in an Androgen Receptor-Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites.
Cell line, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA 4423 is a primate-specific regulator of airway epithelial cell differentiation and lung carcinogenesis.
Sex
View SamplesSmoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. While microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify miR-4423 as a novel primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a novel regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis.
MicroRNA 4423 is a primate-specific regulator of airway epithelial cell differentiation and lung carcinogenesis.
No sample metadata fields
View SamplesOchratoxin A gene expression profiling in liver and kidney, with time points of exposure from 7 days to 12 motnhs
A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin a carcinogenicity in rat.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle.
Cell line, Time
View SamplesBTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements (MAREs) at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAREs, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we performed knock-down of BACH1 in HEK 293T cells using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays.
The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle.
Cell line, Time
View Samples