Nitric oxide regulates plant development and responses to stress. However, the mechanisms underlying its regulatory role are still poorly known, and the impact of endogenous NO on the genome-wide transcriptome of plants has not been studied. For that purpose, we compared the transcriptomes of NO-deficient nia1nia2, noa1-2 and nia1nia2noa1-2 mutant versus wild type Arabidopsis thaliana plants. A core comprising 66 NO-responsive genes with similar expression in all NO-deficient genotypes was identified. Among them, 46 were down- and 20 up-regulated in NO-deficient plants, and thus positively and negatively regulated by endogenous NO, respectively. Accordingly with changes in its transcriptome, the NO-deficient nia1nia2noa1-2 mutant accumulated anthocyanins and indolic glucosinolates, displayed abnormal iron homeostasis in shoots and roots, and also showed altered root sensitivity to hormones such as ABA, ET, CYK and IAA. Together the presented data suggest NO functions essentially as a modulator of hormone action.
Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors.
Specimen part
View SamplesPrevalence and severity of allergic diseases have increased worldwide. To date, respiratory allergy phenotypes are not fully characterized and, along with inflammation progression, treatment is increasingly complex and expensive. Profilin sensitization constitutes a good model to study the progression of allergic inflammation.
Multi-omics analysis points to altered platelet functions in severe food-associated respiratory allergy.
Specimen part
View SamplesBladder cancer (BC) is a highly prevalent human disease in which Rb pathway inactivation and epigenetic alterations are common events. However, the connection between these two processes is still poorly understood. Here we show that the in vivo inactivation of all Rb family genes in the mouse urothelium is sufficient to initiate BC development. The characterization of the mouse tumors revealed multiple molecular features of human BC, including the activation of E2F transcription factor and subsequent Ezh2 expression, and the activation of several signaling pathways previously identified as highly relevant in urothelial tumors. Whole transcriptional characterizations of the mouse bladder tumors revealed a significant overlap with human BC samples, and a predominant role for Ezh2 in the downregulation of gene expression programs. Importantly, we determined that in human superficial BC patients, the increased tumor recurrence and progression in these recurrences is associated with increased E2F and Ezh2 expression and Ezh2-mediated gene expression repression. Collectively, our studies provide a genetically defined model for human high-grade superficial BC and demonstrate the existence of an Rb-E2F-Ezh2 axis in bladder whose disruption can promote tumor development.
In vivo disruption of an Rb-E2F-Ezh2 signaling loop causes bladder cancer.
Specimen part, Disease, Treatment
View SamplesThe emergence of multidrug resistant (MDR) Mycobacterium tuberculosis (Mtb) strains, resistant to the frontline anti-tubercular drugs rifampicin and isoniazid, forces treatment with less effective and toxic second-line drugs and stands to derail TB control efforts. However, the immune response to MDR Mtb infection remains poorly understood. Here, we determined the RNA transcriptional profile of in vitro generated macrophages to infection with either drug susceptible Mtb HN878 or MDR Mtb W_7642 infection. Overall design: Bone marrow-derived macrophages (BMDMs) from WT and Il1r1–/– mice were derived in 7 days in GM-CSF supplemented complete DMEM. Cells were infected with either Mtb HN878 or Mtb W_7642 (multiplicity of infection = 1) and RNA samples collected after 6 days.
Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes.
Cell line, Subject
View SamplesRegulatory T cells (Tregs) are essential for maintaining proper immune homeostasis. Extracellular signals (e.g. TCR, CD28, IL-2R) are necessary for the generation and maintenance of Tregs, but how these signals are integrated to control the gene expression patterns of Tregs is less clear. Here we show that the epigenetic regulator, Ezh2, was induced by CD28 costimulation and Ezh2 activity was elevated in Tregs as compared to conventional CD4+ T cells. Deletion of Ezh2 in mouse Tregs led to a progressive autoimmune disease because Tregs were compromised after activation, losing proper control of essential Treg lineage genes and adopting a gene expression pattern similar to Foxp3-deficient ‘Tregs.’ Lineage-tracing of Ezh2-deficient Tregs in vivo confirmed that the cells were destabilized selectively in activated Treg populations, which led to a significant loss of Tregs in non-lymphoid tissues. These studies reveal an essential role for Ezh2 in the maintenance of Treg “identity” during cellular activation and differentiation. Overall design: RNAseq of sorted populations of CD62Lhi or CD62Llo Tregs for both Ezh2-HET (Foxp3YFP-Cre/Foxp3WT;Ezh2fl/+ female mice) and Ezh2-KO (Foxp3YFP-Cre/Foxp3WT;Ezh2fl/fl female mice) were generated, in triplicate for each condition, using Illumina HiSeq 2500 single-end 50bp sequencing platform.
The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation.
No sample metadata fields
View SamplesRectus abdominis muscle biopsies were obtained from 65 upper gastrointestinal (UGI) cancer patients during open surgery and RNA profiling was performed on a subset of this cohort (n=21) using the Affymetrix U133+2 platform with the aim of identifying biomarkers of cancer related muscle wasting.
Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia.
Sex, Age, Specimen part, Disease
View SamplesGene expression study of DSG2 silenced human microvascular endothelial cells
Desmoglein-2-integrin Beta-8 interaction regulates actin assembly in endothelial cells: deregulation in systemic sclerosis.
Specimen part
View SamplesHuman skin samples from cutaneous lupus subtypes, psoriasis, and normal patients were used to corroborate findings of Fas Ligand elevation in a murine model of cutaneous lupus
Fas ligand promotes an inducible TLR-dependent model of cutaneous lupus-like inflammation.
Specimen part, Disease, Disease stage
View SamplesTo determine the prevalence of cotranscriptional splicing in Drosophila, we sequenced nascent RNA transcripts from Drosophila S2 cells as well as from Drosophila heads. 87% of introns assayed manifest more than 50% cotranscriptional splicing. The remaining 13% are cotranscriptionally spliced poorly, or slowly, with ~3% being almost completely retained in nascent pre-mRNA. Although individual introns showed slight but statistically significant differences in splicing efficiency, similar global levels of splicing were seen from both sources. Importantly, introns with low cotranscriptional splicing efficiencies are present in the same primary transcript with efficiently spliced introns, indicating that splicing is intron-specific. The analysis also indicates that cotranscriptional splicing is less efficient for first introns, longer introns and introns annotated as alternative. FinallyFinally, S2 cells expressing the slow RpII215C4 mutant manifest substantially less intron retention than wild-type S2 cells. Overall design: Examination of Total pA and Nascent RNA from 2 different cell populations and isolated fly heads.
Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila.
Specimen part, Cell line, Treatment, Subject
View SamplesGene expression signatures have the capacity to identify clinically significant features of breast cancer and can predict which individual patients are likely to be resistant to neoadjuvant therapy, thus providing the opportunity to guide treatment decisions.
Gene expression profiles of multiple breast cancer phenotypes and response to neoadjuvant chemotherapy.
Specimen part
View Samples