A rare complication of multiple myeloma is a secondary extramedullary involvement, and the skin is one of the possible sites, due to the physiological homing of plasma cells (PCs) into the skin. The article reports a case of a relapsed refractory MM patient, who developed a cutaneous localization after 16 months from the diagnosis under Bortezomib treatment without a leukemic phase. Patient was refractory to Bortezomib. We analyzed the gene expression profiles, the immunophenotypic and immunohistochemistry profiles of MM cells across the course of the disease at the bone marrow and skin localization. Data obtained were further expanded by an immunohistochemistry analysis on selected molecules in a large cohort of MM patients with cutaneous localization. In particular we focused on the expression of chemokines and chemokine receptors involved in the PC skin homing.
Cutaneous localization in multiple myeloma in the context of bortezomib-based treatment: how do myeloma cells escape from the bone marrow to the skin?
Sex, Age, Specimen part, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern.
Sex, Age, Treatment
View SamplesWe performed genomic and transcriptomic analysis of seven cases of molecular Burkitt lymphoma (mBL) developed in immunosuppressed patients who underwent solid organ transplantation. Interestingly, three cases (43%) were MYC-translocation-negative and revealed the 11q-gain/loss aberration recently identified in 3% of mBL developed in immunocompetent hosts.1 Based on array CGH data, minimal gain and loss regions of 11q (MGR/~4Mb and MLR/~13.5Mb, respectively) were defined and integrative genomic and transcriptomic analysis identified 35 differentially expressed genes, when compared with classic BL. All 16 MGR-dysregulated genes were upregulated, including cancer related USP2, CBL and PAFAH1B2. As expected, all 19 MGL-dysregulated genes were downregulated and two of them, TBRG1 and EI24, are potential tumor suppressor genes. Interestingly, the vast majority of dysregulated 11q23-q25 genes are involved in the MYC and TP53 networks. We hypothesize that the 11q-gain/loss aberration represents a molecular variant of t(8q24/MYC) and affects the same pathological pathways as the MYC oncogene.
Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pattern.
Sex, Age, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Profiling of the transcriptional response to all-trans retinoic acid in breast cancer cells reveals RARE-independent mechanisms of gene expression.
Cell line
View SamplesRetinoids, derivatives of vitamin A, are key physiological molecules with regulatory effects on cell differentiation, proliferation and apoptosis. As a result, they are of interest for cancer therapy. Specifically, models of breast cancer have varied responses to manipulations of the retinoid signaling cascade. This study characterizes the transcriptional response of MDA-MB-231 and MDA-MB-468 breast cancer cells to retinaldehyde dehydrogenase 1A3 (ALDH1A3) and to all-trans retinoic acid (atRA). We demonstrate limited overlap between ALDH1A3-induced gene expression and atRA-induced gene expression in both cell lines, suggesting that the function of ALDH1A3 in breast cancer progression extends beyond its role as a retinaldehyde dehydrogenase. Our data reveals divergent transcriptional responses to atRA, which are largely independent of genomic retinoic acid response elements (RAREs) and consistent with the opposing responses of MDA-MB-231 and MDA-MB-468 to in vivo atRA treatment. We identify transcription factors associated with each gene set. Manipulation of one of the transcription factors (i.e. interferon regulatory factor 1; IRF1) demonstrates that it is the level of atRA-inducible and epigenetically regulated transcription factors that determine expression of target genes (e.g. CTSS, cathepsin S). This study provides a paradigm for complex, combinatorial responses of breast cancer models to atRA treatment, and illustrates the need to characterize RARE-independent responses to atRA in a variety of models.
Profiling of the transcriptional response to all-trans retinoic acid in breast cancer cells reveals RARE-independent mechanisms of gene expression.
Cell line
View SamplesTransient expression of two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference.
Transcriptional signature and memory retention of human-induced pluripotent stem cells.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DNA Methylation Predicts the Response of Triple-Negative Breast Cancers to All-Trans Retinoic Acid.
Sex, Specimen part, Disease, Cell line, Treatment
View SamplesThe biological effects of TTR proteins in the vasculature remain unknown.
Transthyretin proteins regulate angiogenesis by conferring different molecular identities to endothelial cells.
Specimen part
View SamplesThe aim of this experiment was to investigate differential gene expression in splenocytes stimulated with BCG from nave and BCG vaccinated mice. The differences between nave and BCG vaccinated mice might indicate the mechanisms by which BCG vaccination confers an enhanced ability of splenocytes from BCG vaccinated mice to inhibit growth of BCG in splenocyte cultures as compared with splenocytes from naive animals.
Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb).
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A Long Noncoding RNA Regulates Sister Chromatid Cohesion.
Cell line
View Samples