In platelets, splicing and translation occur in the absence of a nucleus. However, the integrity and stability of mRNAs derived from megakaryocyte progenitor cells remain poorly quantified on a transcriptome-wide level. As circular RNAs (circRNAs) are resistant to degradation by exonucleases, their abundance relative to linear RNAs can be used as a surrogate marker for mRNA stability in the absence of transcription. Here we show that circRNAs are enriched in human platelets 17-188 fold relative to nucleated tissues, and 14-26 fold relative to samples digested with RNAseR to selectively remove linear RNA. We compare RNAseq read depths inside and outside circRNAs to provide in silico evidence of transcript circularity, show that exons within circRNAs are enriched ~13X in platelets relative to nucleated tissues, and identify 3162 genes significantly enriched for circRNAs including some where all RNAs appear to be derived from circular molecules. We also confirm that this is a feature of other anucleate cells through transcriptome sequencing of mature erythrocytes, demonstrate that circRNAs are not enriched in megakaryocytes, and that linear RNAs decay more rapidly than circRNAs in platelet preparations. Collectively, these results suggest that circulating platelets have lost on aveage over 90% of their progenitor mRNAs, and that translation in platelets occurrs against the backdrop of a highly degraded transcriptome. Finally, we find that transcripts classified as products of reverse transcriptase template switching are both enriched in platelets and resistant to decay, countering the recent suggestion that up to 50% of rearranged RNAs are artefacts. Overall design: A single rRNA depleted total RNA sample was sequenced. This together with 25 publicly available rRNA depleted total RNA samples (including 3 from platelets) were analysed using PTESFinder v 1 (http://sourceforge.net/projects/ptesfinder-v1/) to identify back-splice junctions, characteristic of circRNA transcripts. The contribution of circRNA producing exons was analysed on a gene by gene basis as follows: All circRNA transcripts identified in any sample were first pooled to define exons which can contribute to circRNA generation using custom scripts (available on request). For each sample, expression estimates (RPKMI) across all circRNA producing exons were computed for each locus using the total size of exons (in bp) and the read counts mapping to them. Similarly, total size and exonic read counts for exons for which no circRNA were detected in any sample were used to compute expression estimates (RPKME) for non-circRNA producing exons for each locus. Abundance ratios (RPKMI/RPKME and RPKMI/RPKMI+RPKME) were calculated and compared between Platelets and human tissues using Wilcoxon signed-rank test. Please note that the ''25sample_info_accn_no.txt'' contains the accession numbers and tissue/cell type information for 25 samples analyzed together.
Circular RNA enrichment in platelets is a signature of transcriptome degradation.
No sample metadata fields
View SamplesAbout 10% of all NSCLC patients respond to gefitnib treatment and all of these patients will acquire resistance to the EGFR TKI.
Rapidly acquired resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines through de-repression of FGFR2 and FGFR3 expression.
Cell line, Treatment
View SamplesThe aim of this experiment was to investigate differential gene expression in splenocytes stimulated with BCG from nave and BCG vaccinated mice. The differences between nave and BCG vaccinated mice might indicate the mechanisms by which BCG vaccination confers an enhanced ability of splenocytes from BCG vaccinated mice to inhibit growth of BCG in splenocyte cultures as compared with splenocytes from naive animals.
Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb).
Sex, Age, Specimen part
View SamplesTranscriptome profiling using RNA-seq of MV+, a mouse lens epithelium cell line expressing Pax6 and RAG renal adenocarcinoma cell line which does not express Pax6. Overall design: Total RNA was collected and a Illumina sequencing libraries prepared from three biological replicates of cultured MV+ and RAG cells.
Polymer Simulations of Heteromorphic Chromatin Predict the 3D Folding of Complex Genomic Loci.
Cell line, Subject
View SamplesThe underlying mechanisms which are responsible and govern early haematopoietic differentiation during development are poorly understood. Gene expression comparison between pluripotent human embryonic stem cells and earliest haematopoietic progenitors may reveal novel transcripts and pathways and provide crucial insight into early haematopoietic lineage specification and development.
Large-scale transcriptional profiling and functional assays reveal important roles for Rho-GTPase signalling and SCL during haematopoietic differentiation of human embryonic stem cells.
Specimen part, Cell line
View SamplesTransient expression of two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference.
Transcriptional signature and memory retention of human-induced pluripotent stem cells.
Sex, Specimen part
View SamplesHuman medulloblastoma (MB) can be segregated into four major categories based on gene expression patterns: Hedgehog (HH) subtype, Wnt subtype, Group 3, and Group 4. However, they all exhibit strikingly different gene expression profiles from Atypical Teratoid/Rhabdoid Tumor (AT/RT). We re-analyzed published gene expression microarray dataset of pediatric brain tumors to identify a gene expression profile that clearly distinguished human AT/RT from human MB. We used this profile, choosing only genes that have clear murine orthologs, to compare tumors from Snf5F/Fp53L/LGFAP-Cre mice (in C57Bl/6 strain background) with MB from Ptc1+/- mice (in mixed C57Bl/6 and 129Sv strain background). Snf5F/Fp53L/LGFAP-Cre tumors are clearly very different from mouse MB and the markers that distinguish human AT/RT from human MB also distinguish the mouse tumors.
Generation of a mouse model of atypical teratoid/rhabdoid tumor of the central nervous system through combined deletion of Snf5 and p53.
No sample metadata fields
View SamplesFour vehicle-treated and four HhAntag-treated pancreatic xenograft tumors were profiled for gene expression changes using Affymetrix U133 Plus 2.0 and Affymetrix Mouse Genome 430 2.0 arrays.
A paracrine requirement for hedgehog signalling in cancer.
No sample metadata fields
View SamplesPeripherally derived macrophages infiltrate the brain after bone marrow transplantation and during central nervous system (CNS) inflammation. It was initially suggested that these engrafting cells were newly derived microglia and that irradiation was essential for engraftment to occur. However, it remains unclear whether brain-engrafting macrophages (beMfs) acquire a unique phenotype in the brain, whether long-term engraftment may occur without irradiation, and whether brain function is affected by the engrafted cells. In this study, we demonstrate that chronic, partial microglia depletion is sufficient for beMfs to populate the niche and that the presence of beMfs does not alter behavior. Furthermore, beMfs maintain a unique functional and transcriptional identity as compared with microglia. Overall, this study establishes beMfs as a unique CNS cell type and demonstrates that therapeutic engraftment of beMfs may be possible with irradiation-free conditioning regimens. Overall design: Microglia were isolated from the brains of adult male c57BL/6 mice given bone marrow tranplants (BMT) with or without head shield. All mice received PLX5622 for 2 weeks, then placed and normal chow to recoever. Some mice were then challenged with LPS. Cells were isolated by MACS using CD11b magnetic beads.
Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia.
Age, Specimen part, Cell line, Treatment, Subject
View SamplesPeripherally derived macrophages infiltrate the brain after bone marrow transplantation and during central nervous system (CNS) inflammation. It was initially suggested that these engrafting cells were newly derived microglia and that irradiation was essential for engraftment to occur. However, it remains unclear whether brain-engrafting macrophages (beMfs) acquire a unique phenotype in the brain, whether long-term engraftment may occur without irradiation, and whether brain function is affected by the engrafted cells. In this study, we demonstrate that chronic, partial microglia depletion is sufficient for beMfs to populate the niche and that the presence of beMfs does not alter behavior. Furthermore, beMfs maintain a unique functional and transcriptional identity as compared with microglia. Overall, this study establishes beMfs as a unique CNS cell type and demonstrates that therapeutic engraftment of beMfs may be possible with irradiation-free conditioning regimens. Overall design: Mice were given 1000rad whole body irradiation, followed by bone marrow transplant with UBC-GFP bone marrow at 8 weeks of age. Engraftment was allowed to occur for 8 months, then engrafting macrophages and microglia were isolated from whole brains for RNA-Seq.
Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia.
Age, Specimen part, Cell line, Subject
View Samples